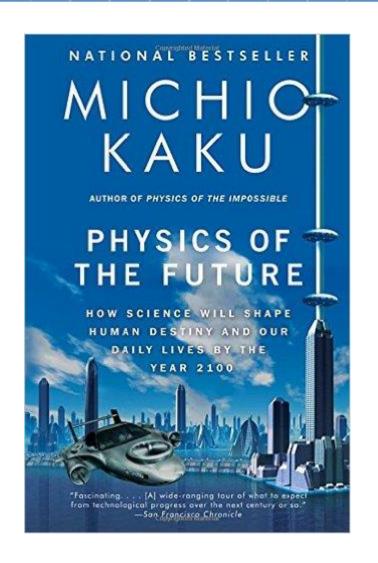
TECHNOLOGY TRENDS AND ANTICIPATED ETHICAL DILEMMAS

ESCWA Technology Centre Amman, Jordan July 2017

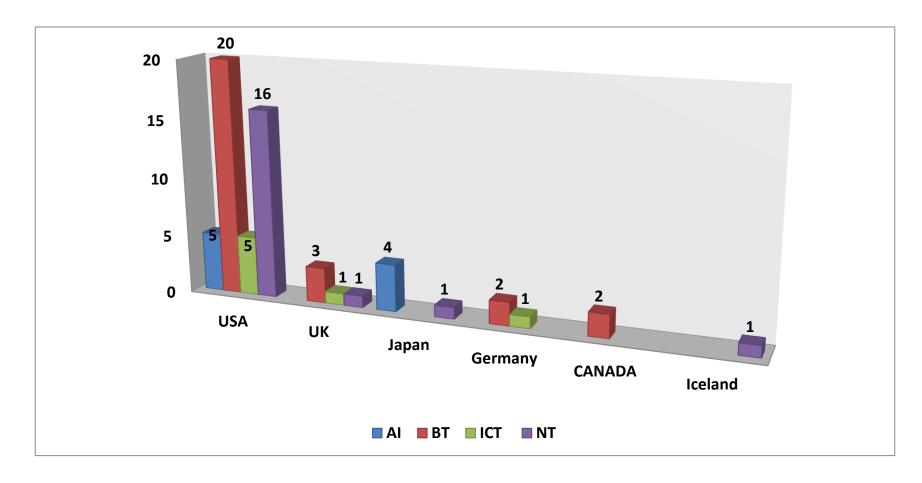
Economic and Social Commission for Western Asia

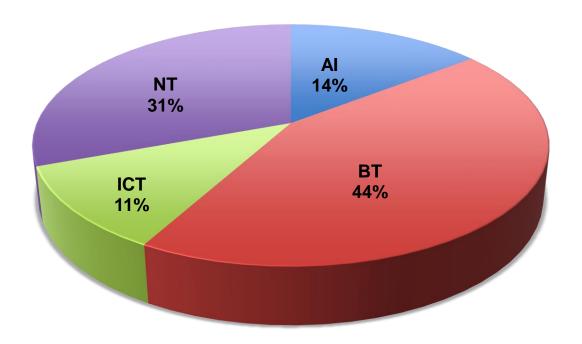
In 20 Minutes: I will <u>Not</u> Discuss Innovation and Ethics related to:


IMPORTANT TOPICS:

- > IP Claims and Patenting
- > IPR and IPP
- Reverse Engineering
- Prototyping
- Procurement

This 20 minutes session: On The......


- 1. Emerging Technology trends: Forecast 100 years!
- 2. Arab countries: CASE Nanotech
- 3. Ethical Dilemmas of Technological Innovation
- 4. Challenges in assessing Emerging Technologies
- 5. Guidelines: Responsible Innovation



Michio Kaku, "Physics of the Future: how science will shape human destiny and our daily lives by the year 2100," 2012

Michio Kaku: Tech for next 100 years

Total Identified Projects: 62

Artificial Intelligence

Projects

Artificial Reasoning

Augmented reality

Driverless car

Emotional robot

Robot chef

Robot flutist

Robot nurse

Robot remote sensing

Universal translator

BIOTECH

Projects							
Aging single gene	Gene sequencing	Reconstructing from genes					
Artificial retina	Gene therapy	Regrown finger					
Bacteria propelling nanocars	Genetic happiness setpoint	Reverse eng brain					
Biochip	Longer life breeding	Smart mice biotech					
Brain machine control	Mammoth genes	Stem cell					
Caloric restriction	Mighty genes	Stem cell heart					
Cloning	Monogamous gene	Tissue engineering					
Designer children	Neanderthal genome						
DNA chips	Nurotransmitter mice						
	Printer of living Heart						
DNA molecules Computer	tissues	threeding					

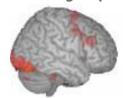
ICT

Projects

F-MRI

Fusion energy

Modeling brain dawn super comp


MRI mouse

Quantum Computer


Space colony

Virtual haptic

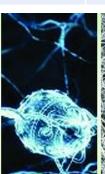
fMRI group results to word reading in 10 subjects

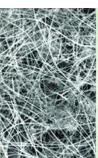
NYU Cognitive Neurophysiology Laboratory

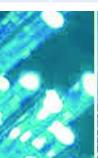
NANOTECH

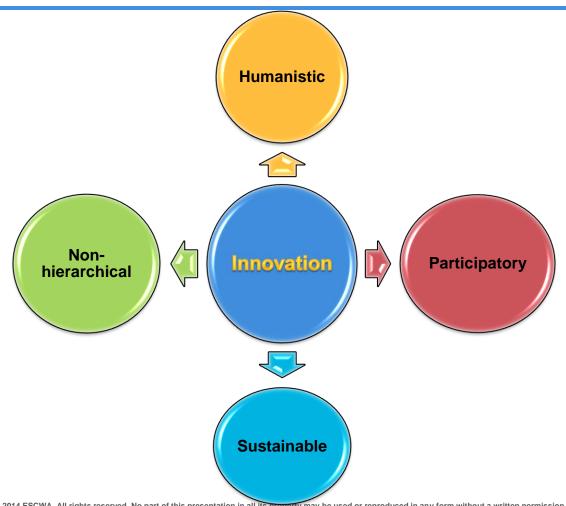
Projects	
Analyzing ice 1000s years	
old	Nano cars in blood
Antimatter	Nano particles against cancer
Atomic Guitar	Nano particles pills zapping cancers
Carbon nanotubes	Nano self assembly
Flexible e-paper	Programmable Matter
Glasses lens Display	Smart pill
Graphine Transistor	Space Solar Power
Microchip blood tester	Speedy nano cars
Mini helicopters swarm bots	STM for atom scope
Modular robots	

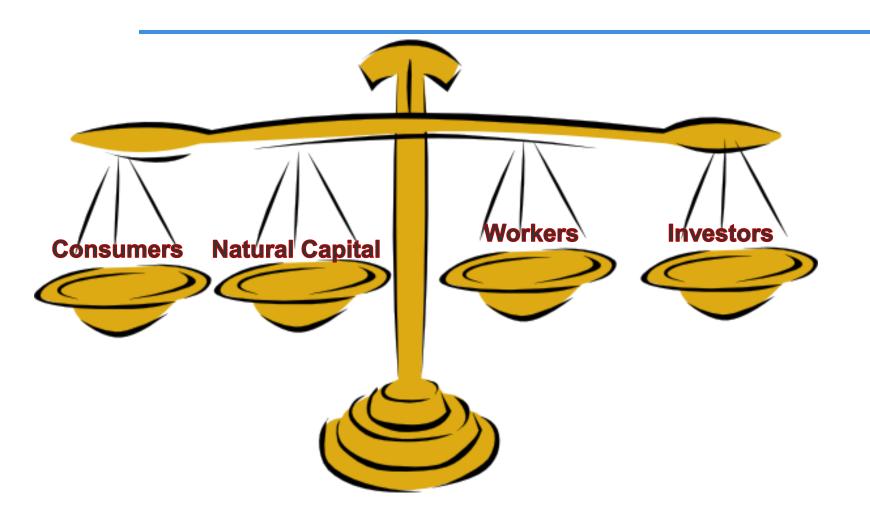
A microscopic view of a nanoparticle carrying a drug payload inside NOVA NEXT


Case of Arab Nanotech Portfolio: ALECSO 2017


Many Arab countries adopted serious national programs to develop nanoscience and technology:


Nanotechnology companies	Nano patents USPTO 2011-2016	World ranking to publish Nano-2016	Total publications nanotechnology ISI	The number of centers and departments of nanotechnology	State
<mark>3</mark>	<mark>158</mark>	<mark>16</mark>	<mark>9425</mark>	6	Saudi Arabia
<mark>2</mark>	<mark>12</mark>	<mark>25</mark>	<mark>6915</mark>	11	Egypt
		41	2281	2	Tunisia





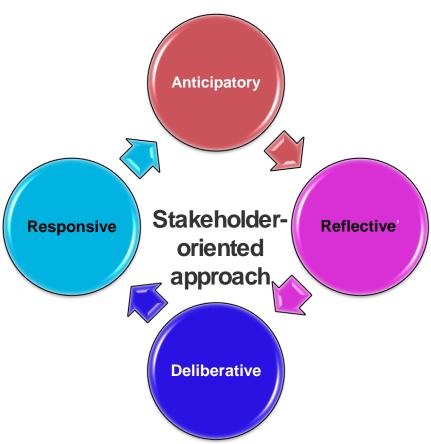
Innovation Characteristics

Fair assessment of the role of technologies

Responsible Innovation Dilemma

- Responsible without shutting down risk-taking
- Unpredictability of potential harmful uses, not originally intended
- Difficult to make a full technological assessment
- Challenges of assessing emerging technologies
- EU defines responsible innovation (RI):

"approach that anticipates and assesses potential implications and societal expectations"


SmantCity

EUREKA

Guidelines: Responsible Innovation

Circular RI process not linear:

Guide innovation with the greatest potential benefits:

Network effects:

Goods:

Commodities:

Positional goods:

Goods negative externalities:

References:

- G. Nathan, Innovation process and ethics in technology: an approach to ethical (responsible) innovation governance, Journal on Chain and Network Science 2015
- 2. G. Mulgan, Good and bad innovation: what kind of theory and practice do we need to distinguish them? www.nesta.org.uk; July 2016
- 3. C. Fabian, R. Fabricant, "The Ethics of Innovation;" Stanford social innovation review, 2014

Economic and Social Commission for Western Asia

THANK YOU

