INDIRECT ESTIMATION

APPLICATION 00000000

CONCLUSIONS

A short guide for small area estimation in household surveys

Illustration to poverty mapping in Palestine with expenditure survey and census data

> Isabel Molina and Eduardo García Dept. of Statistics, Univ. Carlos III de Madrid

Palestinian Expenditure Consumption Survey (PECS) 2016/17

- Sample size: n = 18,363 persons out of N = 4,266,953 (43 out of 10,000)
- Sample sizes of regions by gender are fine:

	Gaza	West Bank	Total
Women	2569	6550	9119
Men	2578	6666	9244
Total	5147	13216	18363

CONCLUSIONS

Palestinian Expenditure Comsumption Survey (PECS) 2016/17

- What if we wish to estimate at **local** level?
- 315 localities in census: 162 in PECS, 157 unsampled.
- Sample sizes localities by gender:

	Min	Q1	Median	Mean	Q3	Max
Women	14	26	35	56.29	61.5	405
Men	13	28	36	57.06	63	464

SMALL AREA ESTIMATION

- Areas/domains: Subpopulations of interest (Example: Localities × gender).
- **Direct estimator:** Based **only** on the survey data **from** the target area/domain.
- Small area: Area/domain for which the considered direct estimator of the target indicator has unacceptable sampling error.

INDIRECT ESTIMATION

- The idea is **borrowing strength** from the other areas.
- Use auxiliary data sources (census or other, ideally a census) that contains some variables related to our target variable and observed also in the survey.
- Consider that the target variable is related with the auxiliary variables **similarly** for all the areas (regression model).
- Include random area effects to account for unexplained between-area heterogeneity (mixed regression model).

6

MODEL-BASED ESTIMATION

- Fit the model to the survey data from all the areas.
- Total survey sample size is typically large, so borrowing a lot of strength.
- Use the fitted model to estimate in the small areas.
- Efficiency gains can be substantial.

INDIRECT ESTIMATION

APPLICATION 00000000

CONCLUSIONS

NOTATION

- Num. areas/domains: D
- Area popn. sizes: N_1, \ldots, N_D
- Area index: *d* = 1, . . . , *D*
- Unit index: $j = 1, \ldots, N_d$
- Welfare measure for indiv. *j* in domain *d*: *E*_{*dj*} (Example: monthly household expenditure per adult equivalent)
- Poverty line: z

INDIRECT ESTIMATION

APPLICATION 00000000

CONCLUSIONS

POVERTY INDICATORS

• Poverty rate:

$$F_{0d} = \frac{1}{N_d} \sum_{j=1}^{N_d} \underbrace{I(E_{dj} < z)}_{= \begin{cases} 1 \text{ if } E_{dj} < z; \\ 0 \text{ otherwise} \end{cases}}$$

• Poverty gap:

$$F_{1d} = rac{1}{N_d} \sum_{j=1}^{N_d} \left(rac{z - E_{dj}}{z}
ight) I(E_{dj} < z)$$

Rel. distance to pov. line

• In general, FGT indicators: For $\alpha \geq$ 0,

$$F_{lpha d} = rac{1}{N_d} \sum_{j=1}^{N_d} \left(rac{z-E_{dj}}{z}
ight)^{lpha} I(E_{dj} < z).$$

✓ Foster, Greer & Thornbecke (1984), Econometrika.

EB ESTIMATORS

- The distribution of expenditures E_{dj} is highly right skewed.
- We need to take some transformation to achieve Normality: $y_{dj} = \log(E_{dj} + k)$
- We consider a model with random area effects for y_{dj} :

$$\begin{aligned} y_{dj} &= \mathsf{x}'_{dj} \mathcal{B} + u_d + e_{dj}, \quad j = 1, \dots, N_d, \ d = 1, \dots, D\\ u_d \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_u^2), \quad e_{dj} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_e^2) \end{aligned}$$

• We obtain the **empirical best** (EB) predictor of the target indicator for each area of interest:

$$\hat{F}_{\alpha d}^{EB} = E[F_{\alpha d}|\mathsf{y}_{s};\hat{\theta}]$$

✓ Molina & Rao (2010), Can. J. Stat.

DATA DESCRIPTION

- Data: Palestinian Expenditure Consumption Survey (PECS) from 2016/2017 and Population Census from 2017.
- **Target:** Estimate poverty rates and gaps for Palestinian localities by gender.
- Areas: In census, 319 localities→ D = 162 in survey.
 We compute estimates for each sampled locality by gender.
- Welfare measure: E_{dj} monthly expenditure per adult equivalent (ILS).
- **Poverty line:** z = 10,027 ILS \rightarrow approx. **26 %** popn. below pov. line.

FITTED MODEL

• We fit a separate model for each gender.

• Explanatory variables:

- ✓ Indicators of region (Gaza, West Bank), type of locality (rural/urban, camp).
- $\checkmark\,$ Household characteristics (size, prop. females, employed ratio).
- ✓ Household head characteristics (unemployed, employisrasett, employnatgov, refugstat, diff, neverschool, secondabove).
- ✓ Dwelling characteristics (type, tenure, num. rooms).
- ✓ Supplies (water, waste, heating systems, freezer, etc.)

MODEL CHECKING

- Model coefficients take reasonable signs.
- All covariates with significant categories for both genders.
- **Explanatory power:** $R^2 = 53.6$ %, both genders.
- Data indicates nothing against normality of model residuals, linearity, heteroscedasticity. Model seems to fit well.

INDIRECT ESTIMATION

APPLICATION 0000000

CONCLUSIONS

QUALITY EB vs. DIRECT: POV. RATE

✓ Median MSE Women: Direct 47, EB: 6.7

✓ Median MSE Men: Direct 45.8, EB: 5.5

APPLICATION 00000000

EB vs. DIRECT: WOMEN, WEST BANK

 \checkmark Reduction in all but one locality, 84 % average MSE reduction!

Locality (sample size in labels)

INDIRECT ESTIMATION

APPLICATION 00000000

CONCLUSIONS

EB vs. DIRECT: WOMEN, GAZA

 \checkmark Great gains also for Pov. Gap (not shown)!

INDIRECT ESTIMATION

APPLICATION 00000000

CONCLUSIONS

ESTIMATES BY REGION

- ✓ Median Pov. Rate: Gaza 55 %, West Bank: 8.3 %
- ✓ Median Pov. Gap: Gaza 17.4%, West Bank: 1.5%

INDIRECT ESTIMATION

APPLICATION 0000000●

ESTIMATED POV. RATE: WOMEN

Locality (sample size in labels)

Locality (samp. size in labels)

CONCLUSIONS

- The use of **census data** in a model allows us to obtain disaggregated estimates of **much better quality**.
- **Direct** estimates equal to **zero** for many localities (32 for Men, 29 for Women) and **highly unstable**.
- **EB** estimates **never zero** and much more stable (smooth), without visible systematic design bias.
- The reduction of error of model-based estimators with respect to direct estimators is notorious (over 82%).

CONCLUSIONS

- The considered unit level methodology allows to disaggregate at any desired level.
- We can estimate whatever indicator that is function of expenditure.
- The considered model **fits rather well** these data. Still, model variations are being explored.
- Gaza has **much larger** pov. rates and gaps. Perhaps using a different pov. line.
- No great differences between men and women, although women with slightly greater estimates for about 70% of localities in West Bank.

INDIRECT ESTIMATION

APPLICATION 00000000

✓ MANY THANKS TO UN-ESCWA AND PCBS FOR GREAT DATA PREPARATION!

✓ THANK YOU ALL FOR YOUR ATTENTION!

20