

Key findings from the IPCC SR 1.5

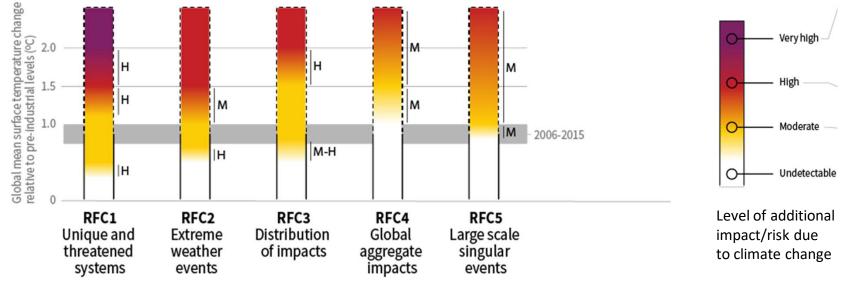
Fatima Driouech UM6P IPCC WGI Vice Chair

Regional Consultation on Climate Change for the 2019 Arab Forum on Sustainable Development and High-Level Political Forum Beirut, 21-22 March 2019

An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of <u>climate change</u>, <u>sustainable</u> development, and efforts to eradicate poverty.

Where are we now?

Since pre-industrial times, human activities have caused approximately 1.0°C of global warming.


- Already seeing consequences for people, nature and livelihoods
- At current rate, would reach 1.5°C between 2030 and 2052
- Past emissions alone do not commit the world to 1.5°C

Ashley Cooper / Aurora Photos

How the level of global warming affects impacts and/or risks associated with selected natural, managed and human systems

Impacts and risks associated with the Reasons for Concern (RFCs)

Examples:

RFC1: coral reefs, the Arctic and its indigenous people, mountain glaciers and biodiversity hotspots RFC2: risks/impacts due to extreme weather events such as heat waves, heavy rain, drought and associated wildfires, and coastal flooding

INTERGOVERNMENTAL PANEL ON Climate change

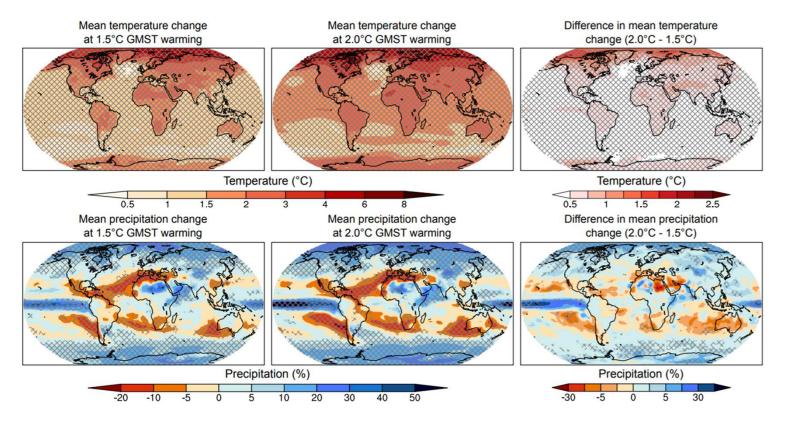
Impacts of global warming 1.5°C

At 1.5°C compared to 2°C:

- Less extreme weather where people live, including extreme heat and rainfall
- By 2100, global mean sea level rise will be around 10 cm lower but may continue to rise for centuries
- 10 million fewer people exposed to risk of rising seas

At 1.5°C compared to 2°C:

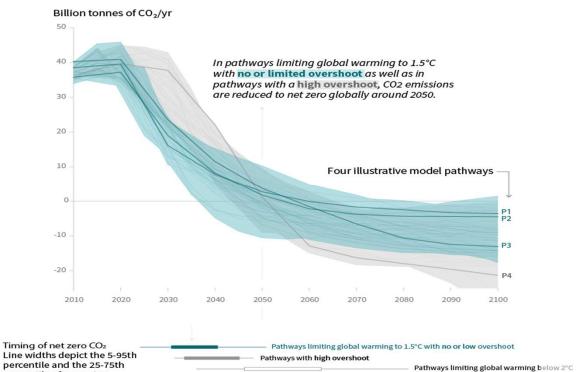
- Lower impact on biodiversity and species
- Smaller reductions in yields of maize, rice, wheat
- Global population exposed to increased water shortages is up to 50% less



Impacts of global warming 1.5°C

At 1.5°C compared to 2°C:

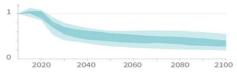
- Lower risk to fisheries and the livelihoods that depend on them
- Up to several hundred million fewer people exposed to climate-related risk and susceptible to poverty by 2050

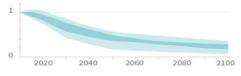

Projected changes in mean temperature (top) and mean precipitation (bottom) at 1.5°C (left) and 2°C (middle) of global warming compared to the pre-industrial period (1861–1880), and the difference between 1.5°C and 2°C of global warming (right). Values were assessed from the transient response over a 10-year period at a given warming level, based on Representative Concentration Pathway (RCP)8.5 Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations (SR-1.5 Chapter 3)

Global emissions pathway characteristics

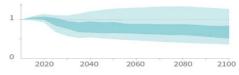
(Not shown above)

Global total net CO₂ emissions


percentile of scenarios


Non-CO₂ emissions relative to 2010

Emissions of non-CO₂ forcers are also reduced or limited in pathways limiting global warming to 1.5°C with **no or limited overshoot**, but they do not reach zero globally.


Methane emissions

Black carbon emissions

Nitrous oxide emissions

INTERGOVERNMENTAL PANEL ON Climate change

Greenhouse gas emissions pathways

- To limit warming to 1.5°C, CO₂ emissions fall by about 45% by 2030 (from 2010 levels) (20% for 2°C)
- To limit warming to 1.5°C, CO₂ emissions would need to reach 'net zero' around 2050 (2075 for 2°C)

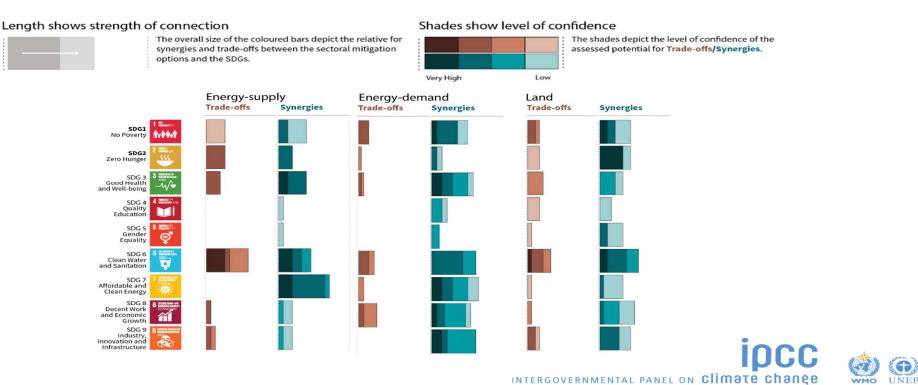
Gerhard Zwerger-Schoner / Aurora Photos

Greenhouse gas emissions pathways

- Limiting warming to 1.5°C would require changes on an unprecedented scale
 - Deep emissions cuts in all sectors
 - A range of technologies
 - Behavioural changes
 - Increased investment in low carbon options

Peter Essick / Aurora Photos

Greenhouse gas emissions pathways


- National pledges are not enough to limit warming to 1.5°C
- Avoiding warming of more than 1.5°C would require CO₂ emissions to decline substantially before 2030

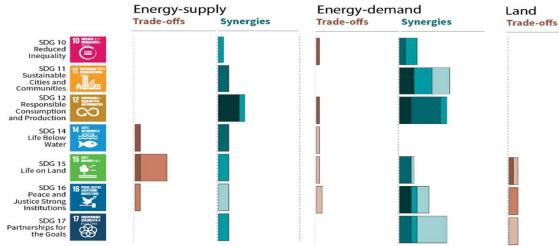
Peter Essick / Aurora Photos

Indicative linkages between mitigation and sustainable development using SDGs (the linkages do not show costs and benefit)

Very High

Indicative linkages between mitigation and sustainable development using SDGs (the linkages do not show costs and benefit)

Length shows strength of connection


The overall size of the coloured bars depict the relative for synergies and trade-offs between the sectoral mitigation options and the SDGs.

Low

Synergies

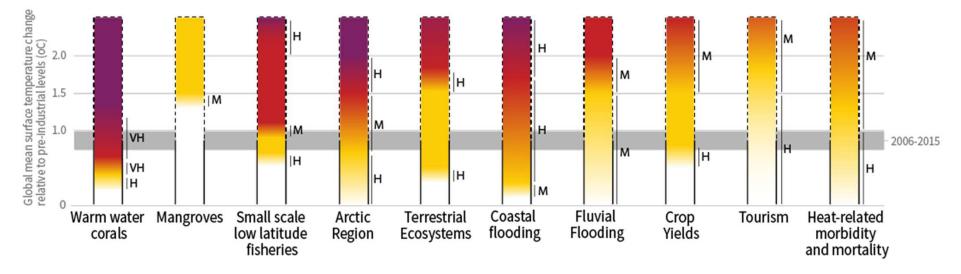
The shades depict the level of confidence of the assessed potential for Trade-offs/Synergies.

Strengthening the Global Response in the Context of Sustainable Development and Efforts to Eradicate Poverty

Climate change and people

- Close links to United Nations Sustainable Development Goals (SDGs)
- Mix of measures to adapt to climate change and reduce emissions can have benefits for SDGs
- National and sub-national authorities, civil society, the private sector, indigenous peoples and local communities can support ambitious action
- International cooperation is a critical part of limiting warming to 1.5°C

Climate-related risks for natural and human systems are **higher** for global warming of **1.5°C than at present**, but **lower than at 2°C**. These risks depend on the magnitude and rate of warming, geographic location, levels of development and vulnerability, and on the **choices and implementation of adaptation and mitigation options**



شكرا على الاهتمام

Thank you for your attention

How the level of global warming affects impacts and/or risks associated with selected natural, managed and human systems

Impacts and risks for selected natural, managed and human systems

Confidence level for transition: L=Low, M=Medium, H=High and VH=Very high

INTERGOVERNMENTAL PANEL ON Climate change

UNEP

Feasibility assessment of examples of 1.5°C-relevant adaptation options

System	Adaptation option	Evidence	Agreement	Ec	Tec	Inst	Soc	Env	Geo	Context
Energy system transitions	Power infrastructure, including water	Medium	High							Depends on existing power infrastructure, all generation sources and with intensive water requirements
Land & ecosystem transitions	Conservation agriculture	Medium	Medium							Depends on irrigated/rainfed system, ecosystem characteristics, crop type, other farming practices
	Efficient irrigation	Medium	Medium							Depends on agricultural system, technology used, regional institutional and biophysical context
	Efficient livestock	Limited	High							Dependent on livestock breeds, feed practices, and biophysical context (e.g. carrying capacity)
	Agroforestry	Medium	High							Depends on knowledge, financial support, and market conditions
	Community-based adaptation	Medium	High							Focus on rural areas and combined with ecosystems- based adaptation, does not include urban settings
	Ecosystem restoration & avoided deforestation	Robust	Medium							Mostly focused on existing and evaluated REDD+ projects
	Biodiversity management	Medium	Medium							Focus on hotspots of biodiversity vulnerability and high connectivity
	Coastal defense & hardening	Robust	Medium							Depends on locations that require it as a first adaptation option
	Sustainable aquaculture	Limited	Medium							Depends on locations at risk and socio-cultural context
Urban & infrastructure system transitions	Sustainable land-use & urban planning	Medium	Medium							Depends on nature of planning systems and enforcement mechanisms
	Sustainable water management	Robust	Medium							Balancing sustainable water supply and rising demand especially in low-income countries
	Green infrastructure & ecosystem services	Medium	High							Depends on reconciliation of urban development with green infrastructure

Feasibility assessment of examples of 1.5°C-relevant adaptation options

	Building codes & standards	Limited	Medium				Adoption requires legal, educational, and enforcement mechanisms to regulate buildings
Industrial system transitions	Intensive industry infrastructure resilience and water management	Limited	High				Depends on intensive industry, existing infrastructure and using or requiring high demand of water
Overarching adaptation options	Disaster risk management	Medium	High				Requires institutional, technical, and financial capacity in frontline agencies and government
	Risk spreading and sharing	Medium	Medium				Requires well developed financial structures and public understanding
	Climate services	Medium	High				Depends on climate information availability and usability, local infrastructure and institutions, national priorities
	Indigenous knowledge	Medium	High				Dependent on recognition of Indigenous rights, laws, and governance systems
	Education and learning	Medium	High				Existing education system, funding
	Population health and health system	Medium	High				Requires basic health services and infrastructure
	Social safety nets	Medium	Medium				Type and mechanism of safety net, political priorities, institutional transparency
	Human migration	Medium	Low				Hazard exposure, political and socio-cultural acceptability (in destination), migrant skills and social networks

- RFC1 Unique and threatened systems: ecological and human systems that have restricted geographic ranges constrained by climate-related conditions and have high endemism or other distinctive properties. Examples include coral reefs, the Arctic and its indigenous people, mountain glaciers and biodiversity hotspots.
- RFC2 Extreme weather events: risks/impacts to human health, livelihoods, assets and ecosystems from extreme weather events such as heat waves, heavy rain, drought and associated wildfires, and coastal flooding.
- RFC3 Distribution of impacts: risks/impacts that disproportionately affect particular groups due to uneven distribution of physical climate change hazards, exposure or vulnerability.
- RFC4 Global aggregate impacts: global monetary damage, global-scale degradation and loss of ecosystems and biodiversity.
- RFC5 Large-scale singular events: are relatively large, abrupt and sometimes irreversible changes in systems that are caused by global warming. Examples include disintegration of the Greenland and Antarctic ice sheets.