Lecture 4 Assessing the Completeness of Death Registration Basic Approaches

Michel Guillot

University of Pennsylvania & French Institute for Demographic Studies Training Workshop on CRVS evaluation, Amman, 28-30 June 2022

Methods for evaluating completeness of death registration

Lecture	Type of method	Demographic balance methods	Extinct generation methods	
4	Basic approaches	Tests of consistency using balancing equation of demographic change for real cohorts	Extinct generations for real cohorts	
5	One census methods (stable assumption)	Brass Growth Balance method (BGB)	Synthetic extinct generations in a stable population (Preston- Coale)	
6	Multiple census method	Generalized Growth Balance method (GGB)	Synthetic extinct generations (SEG)	

Outline

- Plausibility checks
 - Examining patterns of raw (uncorrected) mortality data
 - · Comparison with other sources of mortality data
 - Comparison with model life tables (using MORTPAK)
- Internal consistency of the data
 - Balancing equation of demographic change
 - Synthetic generations

Calculation of uncorrected mortality rates

- $_{n}D_{x}$ = deaths observed during a calendar year
- _nN_x = mid-year population
- $_{n}M_{x} = _{n}D_{x}/_{n}N_{x}$
- More generally:
- $_{n}D_{x}[t_{1}, t_{2}]$ = deaths observed between t_{1} and t_{2}
- $_{n}N_{x}[(t_{1}+t_{2})/2] = mid-period population$

•
$$_{n}M_{x}[t_{1},t_{2}] = \frac{_{n}D_{x}[t_{1},t_{2}]}{_{n}N_{x}[\frac{t_{1}+t_{2}}{2}]*(t_{2}-t_{1})}$$

Other important mortality indicators

- IMR or ₁q₀
- U5MR or ₅q₀
- Life expectancy at birth (e₀)
- Life expectancy at age 5 (e₅)
 - From life table calculations

Patterns in raw mortality data

- Age patterns
- Differentials
 - Urban vs. rural
 - Sex
 - Province
 - Socio-economic status
- International comparisons
- Time trends

Age patterns

- Signs of data quality issues
 - Mortality not uniformly declining with age during the first few months and years of life
 - Mortality decreasing with age at older ages

Example: Kyrgyzstan Monthly probabilities of death

Urban/rural differentials

- Today, in virtually all countries, mortality is lower in urban areas (because of higher education, higher income, better health services, etc.)
- Reported higher mortality in urban areas is usually due to poor data quality (low coverage in rural areas)

Mortality regularities

- Mortality typically higher
 - among males
 - in poorer, less developed provinces
 - among population groups that are less educated, poorer
 - among countries that are less developed
- Observed mortality patterns that do not follow these patterns indicate potential data quality issues

Time trends

- Real increases in mortality reflect severe deterioration of socioeconomic situation and health care system
- Observed increases during times of improvements in socio-economic situation are often signs of data quality issues (for example, improvement in registration)

Caution

- Implausible patterns are not always false!
- Not definite evidence of data quality problem
- Useful for detecting potential problems
- Provides guidance for additional analyses

Comparison with other sources of mortality information

- Particularly useful for IMR and U5MR for which survey-based information is available
- Calculate IMR and U5MR from vital statistics
- Compare with IMR and U5MR estimates from DHS/PAPFAM
- www.childmortality.org
- No similar comparison is possible for mortality above age 5

Comparisons with Model Life Tables (MLT) using MORTPAK

- Model life table shows how age-specific mortality can be expected to be distributed by age given a level of life expectancy
- Conversely, it shows the level of life expectancy that can be expected given mortality in a given age-range
- Based on correlations observed for countries (historical and contemporary) with high quality data
- 9 available models representing variations in age patterns across regions
 4 Coale & Demeny models and 5 UN models
- Always useful to check observed patterns of _nM_x against patterns in MLT

Using MORTPAK

- 1. Choose the "MATCH" procedure by selecting "Application" and then "MATCH" from the drop down menu
- 2. Select Sex (males or females)
- 3. Select Model life table pattern
- 4. Type in your input life table value in the cell "has value of"
- 5. Choose the column of the life table to which your input value pertains $(_n m_x, _n q_x, e_x \text{ or } l_x)$
- 6. Type in the age (beginning of interval) to which your input value pertains
- 7. Click on "Run"

Internal consistency of the data

- N2 = N1 + B D + I O
- True for entire population
- For cohort alive at first census:

$$N2 = N1 - D + I - O$$

• For cohorts born between two censuses

$$N2 = B - D + I - O$$

Consistency of data

- If estimates of N1, B, D, I, O and N2 agree with one another, the data are consistent
- If estimates do not agree, "error of enclosure" -- one or more data sources are biased
- Without further information on relative quality of sources, difficult to conclude about the source of error
- By privileging some sources over other sources, it is possible to estimate the amount of error

Example

- Age 65+ at first census
- Intercensal period of 10 years
- N2(75+) = N1(65+) D + I O
- Assumptions:
 - · Census data are reliable
 - I and O well recorded or negligible at these ages
- (-D + I O) / (N2 N1) = coverage of death registration for cohorts aged 65+ at first census

Coverage of deaths at ages 65+ Kyrgyzstan

	Males			Females		
Intercensal period	Urban areas	Rural areas	Total	Urban areas	Rural areas	Total
1959-70	95.7%	48.7%	58.1%	89.5%	40.1%	50.1%
1970-79	96.7%	83.6%	87.2%	86.3%	68.8%	74.2%
1979-89	94.7%	87.1%	89.7%	87.6%	79.8%	82.7%
1989-99	92.8%	98.0%	95.7%	88.6%	94.5%	91.7%

Problems

- Changes in census coverage
- Issues with registration of migration
- Age-misreporting

Extinct generations

- Estimates the size of a cohort age x by counting all deaths that occurred in that cohort subsequent to age x until the cohort has become extinct
- $N^{(80,t)} = D(80,t) + D(81,t+1) + D(82,t+2) + D(83,t+3) ...$
- Compare N^(x,t) with N(x,t) observed in a census
- N^(x,t)/N(x,t) gives an estimate of average coverage of death registration above age x

Limitations

- Works for cohorts now extinct
- Assumes no migration above age x
- Age-misreporting