Climate Change and Natural Resources Sustainability Cluster Water Resources Section

Groundwater Modelling and Climate Change in Beni-Amir Aquifer, Tadla Complex, Morocco

Abdelkader LARABI*, Marlene TOMASZKIEWICZ** and Ziad KHAYAT**

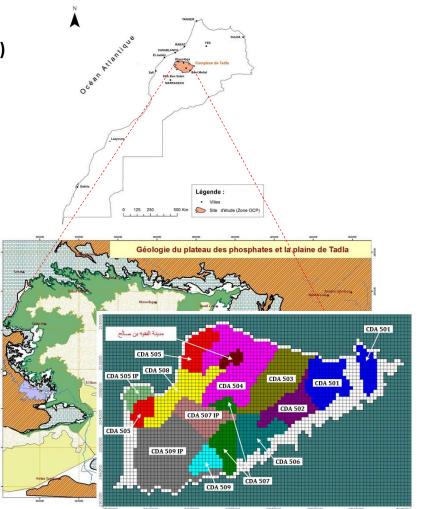
*Director of the Regional Water Centre of Maghreb, Mohammed V University in Rabat

**United Nations Economic and Social Commission for Western Asia (ESCWA), Beirut

Workshop: Mashreq Waters Knowledge Series

Disruptive Technologies for Improved Groundwater Management in the Mashreq Region

15-17 June 2021

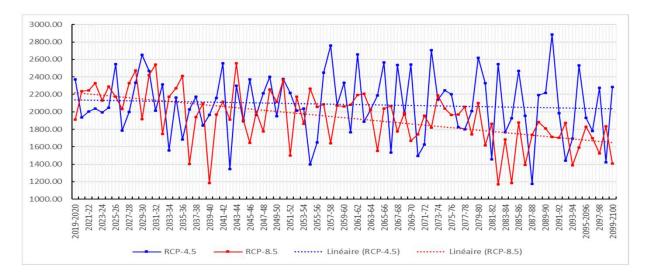

a) Objectives of the Study

Situation of the study area : Complex aquifer system of Tadla (Morocco)

- Located in the Oum Er Ribia basin, between the High Central Atlas in the South and the phosphate highlands in the North.
- Covers an important agricultural area that produces beet cultures to supply 3 important sugar industrial units in Morocco.
- Described as a multilayer system made up of 3 main hydrogeological units closely dependent of Plio-Quaternary.
- The main supplier of water resources for drinking water of several urban centres of the area and the industrial water supply of the OCP installations and the processes of phosphate washing, besides the water requirements of the agriculture of the large irrigated perimeters of Tadla.

Purpose:

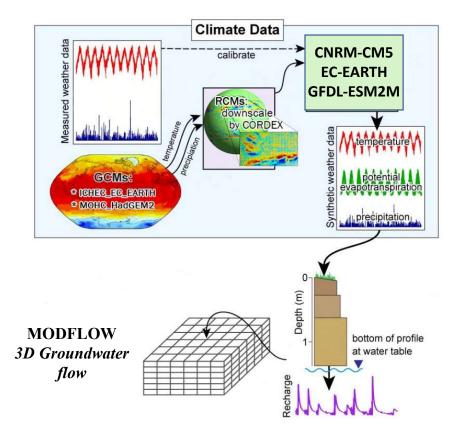
 Assessment of climate change impacts on groundwater resource availability and use in Morocco, specifically on groundwater abstraction from the Tadla aquifer complex system that supplies domestic water as well as large irrigation schemes in the Beni Amir agricultural area.



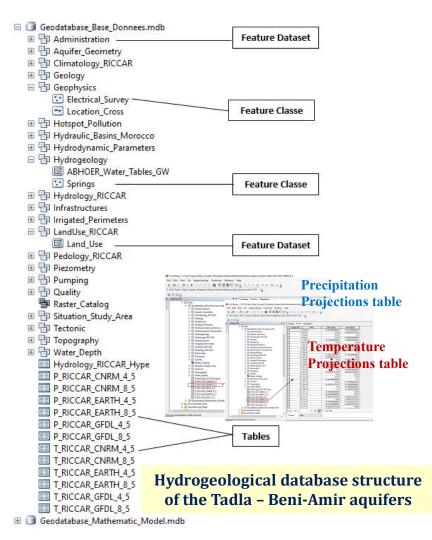
Distribution of the Agricultural Development Centres (CDAs) in the area.

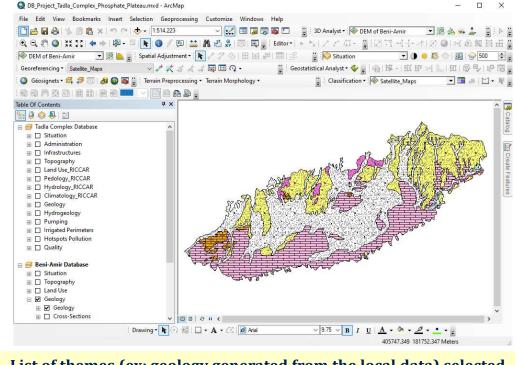
b) Key issue(s) and problem(s) addressed

- The Regional Initiative for the Assessment of Climate Change Impacts on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) has shown that the Arab region will experience rising temperature and largely decreasing precipitation. More specifically, *precipitation trends* will be largely decreasing across the Arab region through mid-century.
- Hence, groundwater resources will be affected by climate change due to a <u>reduction in natural recharge</u> from reduced precipitation and the increase in evapotranspiration caused in part by higher temperatures.


Pilot case study in Morocco: How groundwater availability will vary under CC? Can we extend irrigated area, especially sectors based on groundwater supply? What are the best management schemes of groundwater?

c) Methodology: Coupling Climate and Hydrological Modeling


Analysis of climate change on water resources in the Tadla Aquifer System based on the two RICCAR climate change scenario (RCP 4.5 and RCP 8.5) and the scenarios use, which entails:


- a. Drawing upon RICCAR regional climate modeling projections and regional hydrological modelling outputs as the basis for generating an analysis of climate change impacts on the Oum Er Ribia basin;
- A three-dimensional conceptual groundwater model was designed and simulated a comprehensive set of physical processes and was compared, calibrated and verified with observations.
- c. 3D model in steady state, which is followed by a developed transient and management model that includes the effects of climate change on the Tadla Aquifer System using **RICCAR outputs** and hydrological modeling and coupling for **RCP 4.5** and **RCP 8.5**, across the same time periods (2020-2100).

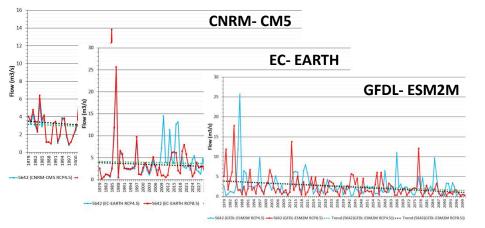
d) Results derived from the project: Geodatabase

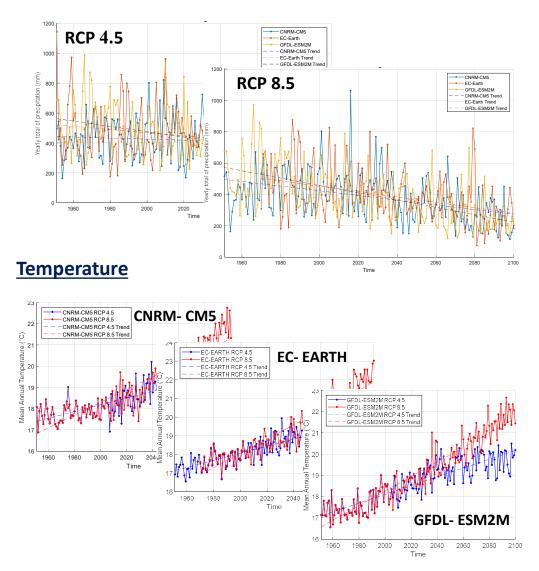
Hydrogeological Database including RICCAR

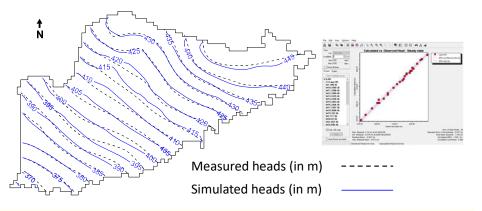
List of themes (ex: geology generated from the local data) selected on the left and their display on the right to view the geological map of the Beni-Amir aquifer system

The data under which articulates this database, were collected from various local and regional organizations (ABHOER, DRPE, ORMVAT, ONEE-Khouribga and DPA-Khouribga and DPA-Settat, EMI and RICCAR)

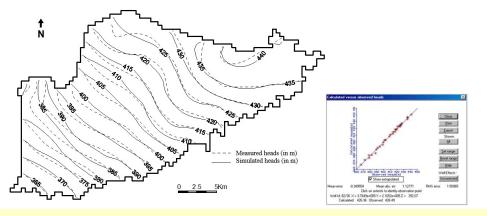
d) Results derived from the project (Evolution and general Trends ----- \rightarrow 2100)


Precipitation


Temperatures are mainly increasing, while precipitation are mainly decreasing for both scenarios. This surely will have negative impact on water resources availability in the study area. The main trend for RCP 8.5 is relatively much stronger, as temperatures increase more and precipitations decrease more.

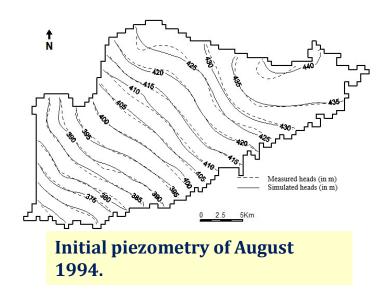


Local RICCAR Data Processing



d) Steady-state model

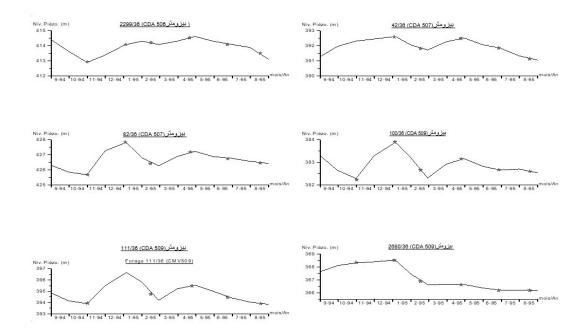
Calibration of the steady-state model on piezometry in 1978


Verification of the model in steady state

Verification of steady-state model on average piezometry 1994-95

Inputs (in Mm	³ /an)	Outputs (in Mm ³ /an)				
Dain	5()	Agricultural pumping	25.3			
Rain	56.4	DWSI pumping	15.2			
Irrigation	130.6	Natural drainage (OER)	136.8			
Deres la mainerata	12 0	Boundary outputs	47.9			
Boundary inputs	43.8	Evaporation	5.6			
Total	230.8	Total	230.8			

Water balance of the aquifer system calculated after calibration in steady state.

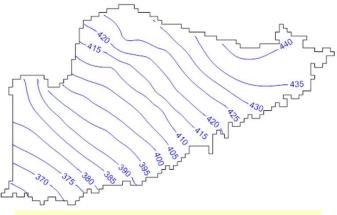

Inputs (in Mm ³ /an)		Outputs (in Mm ³ /an)				
Storage	76.6	Storage	72.2			
			45.5			
Precipitation	31.3	Agricultural pumping	91.5			
Irrigation	120.4	DWSI pumping	7.9			
Boundary	10.1	Boundary outputs	18.6			
inputs		Evaporation	3.5			
Total	234	Total	234			

d) Simulations of the model in unsteady state

Water balance of the aquifer calculated in transient regime.

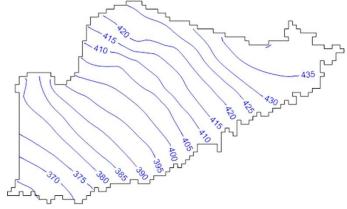
Period	Storage variation	Period	Storage variation
9-1994	0.018	3-1995	-0.064
10-1994	0.024	4-1995	0
11-1994	-0.016	5-1995	-0.16
12-1994	-0.032	6-1995	0.08
1-1995	-0.056	7-1995	0.096
2-1995	-0.064	8-1995	0.096

Storage variation of the model in transient state (1994-1995) (in x106 m3).



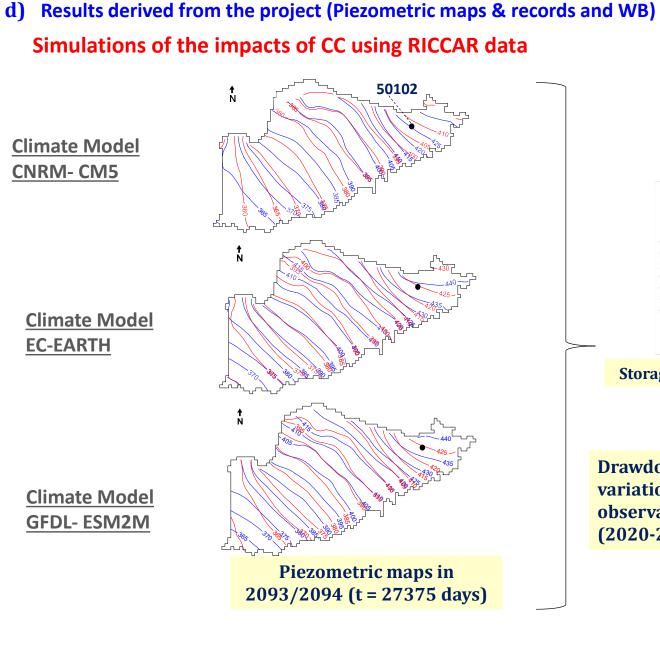
Calibration results for time series of piezometric levels in observation wells in transient state (Measured heads are in star symbol and simulated heads are in solid line).

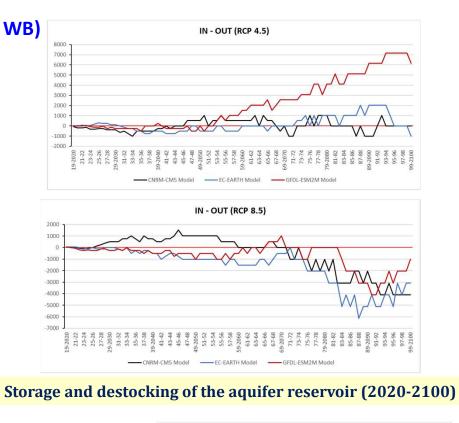
We also calculated the water balance for 1994-95 and shows that the results obtained agree with those of the balance of the model in steady state established for the same period. Furthermore, the intra-annual variation in the storage of the aquifer shows that on a regional scale the aquifer is characterized by a quasi-permanent regime.


d) Simulated the model for the year 2017-2019

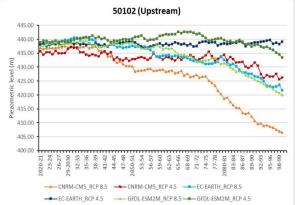
Based on the model results for steady state and transient conditions, we have also simulated the model for the year 2017-2019

Simulated piezometry for 2018

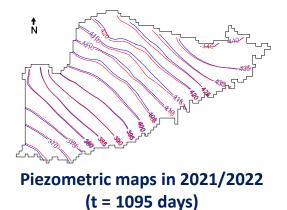

Inputs (in m ²	3)	Outputs (in m ³)				
Storage	60 809 336	Storage	16 739 039			
Rainfall recharge	53 843 968	Agricole pumping	55 121 780			
Irrigation recharge	47 880 000	Agricole pumping				
drainage from OER river	25 887 175	OER river drainage	102 792 978			
Western inflow	6 762 968	Western outflow	34 333 290			
Northern inflow	27 647 185	Northern outflow	13 843 556			
Total	222 830 632	Total	222 830 643			

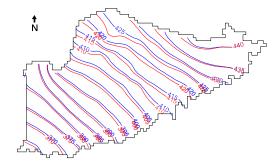


Simulated piezometry for 2019

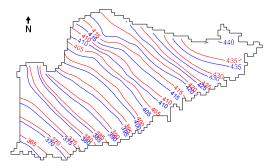

Inputs (in m ³	²)	Outputs (in m ³)				
Storage	75 217 368	Storage	159 925			
Rainfall recharge	25 006 608	Agricole pumping	112 483 244			
Irrigation recharge	39 480 000	Agricole pumping				
drainage from OER river	34 129 305	OER river drainage	85 790 101			
Western inflow	8 430 883	Western outflow	23 138 378			
Northern inflow	45 561 284	Northern outflow	6 253 921			
Total	227 825 448	Total	227 825 569			

The water balance does not vary much, which confirms the previous finding on the quasi-steady state regime at the yearly scale.

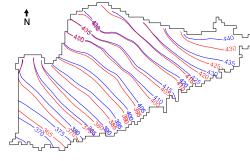




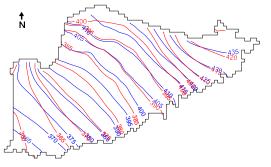
Drawdowns variation in 50102 observation well (2020-2100)



d) Simulations of the impacts of climate change using RICCAR data Average of CNRM-CM5, EC-EARTH, GFDL-ESM2M Models



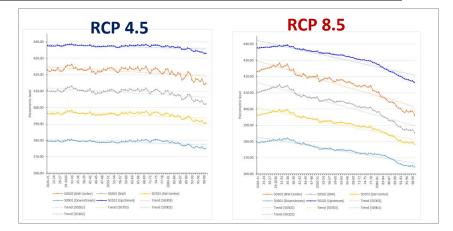
Piezometric maps in 2030/2031 (t = 4380 days)



Piezometric maps in 2047/2048 (t = 10585 days)

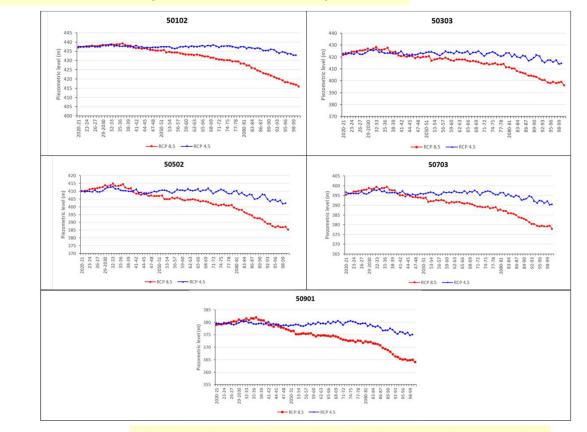
Isoline for RCP 4.5Isoline for RCP 8.5

Piezometric maps in 2075/2076 (t = 20805 days)


Piezometric maps in 2093/2094 (t = 27375 days)

Piezometric maps selected for some years in the study area (Average of CNRM-CM5, EC-EARTH, GFDL-ESM2M Models for RCP 4.5 and RCP 8.5 Scenarios).

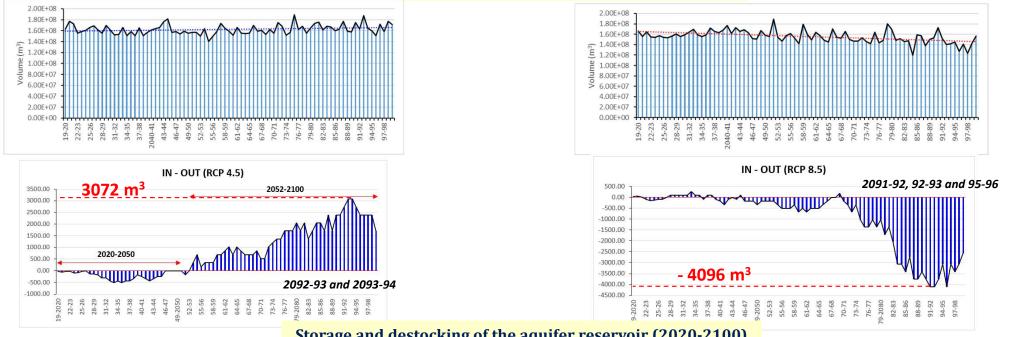
d) Results derived from the project (Projected piezometric records)


Average of the 3 RCM Models

Time	Head	50102	50303	50502	50703	50901
	RCP 4.5	437.53	421.90	409.62	395.96	379.45
21-2022	RCP 8.5	437.60	423.28	410.31	396.18	379.12
	DH	0.07	1.38	0.69	0.22	-0.33
	RCP 4.5	438.50	425.77	412.35	397.88	380.34
2030-31	RCP 8.5	438.65	427.15	413.85	398.68	380.84
	DH	0.16	1.38	1.49	0.79	0.51
	RCP 4.5	437.13	422.08	421.90	395.60	378.72
2047-48	RCP 8.5	435.47	419.57	423.28	393.94	377.26
	DH	-1.66	-2.51	1.38	-1.66	-1.46
	RCP 4.5	437.99	423.14	410.56	396.91	380.22
2075-76	RCP 8.5	429.66	413.41	400.65	388.46	372.06
	DH	-8.32	-9.72	-9.91	-8.45	-8.16
	RCP 4.5	428.22	411.19	398.99	385.66	372.31
2093-94	RCP 8.5	419.32	398.55	387.55	379.51	365.42
	DH	-8.89	-12.64	-11.44	-6.15	-6.90

Drawdowns variation in 5 observation wells 2020-2100

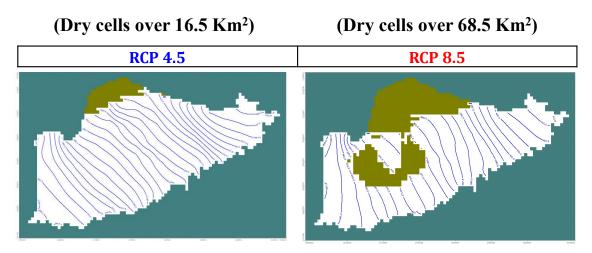
Comparison of drawdowns in the 5 observation wells for some selected dates (RCP 4.5 and RCP 8.5)


Comparison of simulated piezometric records in the study area (RCP 4.5 and RCP 8.5)

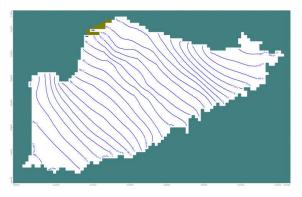
Results derived from the project (Water balance variation) d)

Average of the 3 RCM Models

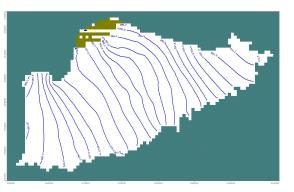
RCP 4.5	D	DWA = 140 210 347 m ³ \cong 140 Mm ³ (2054-2055)								DWA = 119	911 067 m	³ ≅ 120 Mı	m ³ (2084-20	085)	
Time (Year)	2021/22	2030/31	2047/48	2075/76	2093/94	2095/96	2099/2100	Time (Year)	2021/22	2030/31	2047/48	2075/76	2093/94	2097/98	2099/2100
STORAGE IN (m ³)	31 822 542	1 182 872	6 307 541	41 799 467	39 752 919	16 095 337	7 23 793 023	STORAGE IN (m ³)	13 882 443	85	21 439 701	30 485 205	37 121 320	124 43 437	51 375 443
RECHARGE IN (m ³)	81 930 203	101 135 208	90 524 583	90 032 127	69 130 923	78 731 43	7 93 460 137	RECHARGE IN (m ³)	91 821 317	99 657 727	72 594 433	80 233 473	56 422 400	70 176 257	57 085 610
FLOW IN (m ³)	58 914 224	58 786 965	57 225 513	57 020 073	55 837 183	55 836 500	0 54 082 730	LAT FLOW IN (m ³)	59 127 336	59 127 339	56 822 483	53 351 850	48 507 053	48 347 733	47 786 153
TOTAL IN (m ³)	172 666 987	161 105 027	154 057 730	188 851 197	164 720 967	150 663 500	0 171 335 667	TOTAL IN (m ³)	164 831 093	158 785 157	150 856 360	164 070 397	142 051 000	130 966 533	156 247 067
STORAGE OUT (m ³)	18 581 147	26 854 379	15 421 280	26 847 295	4 532 927	7 315 43	7 34 634 966	STORAGE OUT (m ³)	13 437 434	19 634 981	5 703 669	5 866 283	269 717	13 169 941	216 107
WELLS OUT (m ³)	154 085 819	134250797	138 636 377	162 004 137	160 188 067	143348033	3 136 700 967	WELLS OUT (m ³)	151 393 691	139 150 163	145 152 937	158 204 417	141 781 000	117 797 200	156 030 967
TOTAL OUT (m ³)	172 666 955	161105153	154 057 730	188 851 197	164 720 967	150 663 867	7 171 336 400	TOTAL OUT (m ³)	16 4831 125	158 785 153	150 856 363	164 070 743	142 050 667	130 967 167	156 246 700


Water balance evolution in the study area

Storage and destocking of the aquifer reservoir (2020-2100)


d) Results derived from the project (extension of impacted areas by dry wells)

✤ <u>2nd layer</u>



✤ <u>3rd layer</u>

(Dry cells over 1 Km²)

(Dry cells over 4.5 Km²)

Analysis of the aquifer piezometry at the end of the century shows that several sectors of the aquifer <u>will be</u> <u>partially or completely</u> dried up :

for RCP 8.5 scenario :

- all the pumping wells crossing the first layer will be dried,
- as well as over an area of 68.5 km² of the 2nd and
- 13 km² of the last layer.
- Whereas for the RCP 4.5 scenario :
 - the dried areas are relatively reduced to 4.5 km² on the 2nd layer and
 - 1 km² on the 3rd layer located at the north of the study area.

d) Conclusions derived from the project and key recommendations for decision-makers

- Groundwater resources in the Tadla aquifer system will be affected by <u>climate change</u> due to a reduction in natural recharge from reduced precipitation (the mean will be 20% less at the end of the century for RCP 4.5; and 50% less for RCP 8.5);
- The *increase in evapotranspiration* caused in part by **higher temperatures** (the mean is about 2°C increase for RCP 4.5 and more than 4°C increase for RCP 8.5 at the end of the century).
- Water availability in the aquifer system will decrease for both scenarios, showing a severe situation for the RCP 8.5 scenario. This will result in groundwater table decrease for both scenarios varying from 10m (RCP 4.5) to more than 25m (RCP 8.5) which makes some aquifer areas completely dry.
- These results are of great importance as key information for decision-makers regarding the future of the sustainable exploitation of groundwater resources in the aquifer.
- The results of the RCP 8.5 scenario present a great concern for the future of irrigation agriculture in the study area since some farms would be abandoned due to the unavailability of groundwater. On the other hand, the results of the RCP 4.5 scenario are less severe but will require rational and economical management of water resources.

• Adaptation measures that account for these impacts of climate change on groundwater resources specifically in **improving productivity in the agriculture** sector are urgently needed, such as extensive reconversion of gravity irrigation to **drip irrigation** and **adapted crops** that are water efficient and more resilient to climate change.

• Assess Impact of CC on groundwater aquifers must be generalized in order to underline the consequences for the entire region and seek operational measures for the adaptation and management of groundwater systems in an adaptive and optimal manner.