

GEOGIOWS ECMWF Streamflow Services:

Open Source Online Hydrologic Analysis Leveraging Disruptive Technology

Jim Nelson – BYU Michael Souffront - Aquaveo

Stakeholders – They Make the Decisions

A little bit of history

The Grand Challenge:

VS

Creating an operational global high-resolution hydrologic model

Overcoming Global Modeling Barriers

Global Streamflow Services – A Disruptive Technology

To This

GEOGIOWS ECMWF Streamflow Services is built on GIOFAS

GIOFAS - Limited to larger drainage areas

Downscaling process

Mapping gridded runoff to basins/stream network

Muskingum Routing with RAPID

Global Network

Historical Simulation

ECMWF 1979-2018

Return Periods

Gumbel Distribution

Streamflow Forecasts

Forecasted Streamflow reach_id: 7061884

Global Streamflow Services from ECMWF

Web Services

Streamflow API

Global WMS at Living Atlas

Custom Web Apps

Streamflow Services

Forecast Warning Points

Accessibility

Web Applications

API

REST API (https://geoglows.ecmwf.int)

GEOGIoWS ECMWF Streamflow Service

About

Publications

REST API Documentation

Source Code

GEOGIOWS ECMWF Streamflow Service

Welcome to the GEOGIoWS ECMWF Streamflow Service. This website contains information about the model. It also hosts a REST API for accessing the results of the model and documentation about how to use it. Click on the map below to begin exploring the forecasted streamflow around the world.

Streamflow Forecasts

Streamflow Forecasts

Forecasted Streamflow reach_id: 7061884

Forecast Record

Probabilistic Forecasts

Ensemble Predicted Streamflow reach_id: 7061884

Probabilistic Forecasts

High Resolution Forecast

Exceedance Probability

Forecasted Streamflow reach id: 7064784

Percent of Ensembles that Exceed Return Periods										Percent of Ensembles that Exceed Return Periods																								
Dates	Ma	y 27 M	ay 28 I	<i>l</i> lay 29	May 3	30 May	31 Jun	01 Jun	02 Jun	03 Jun	04 Jun	05 Jun	06 Jun	07 Jur	n 08 Jun	09 Jun	10 Jun 11	Dates	May 2	7 May 2	28 May 2	9 May 3	0 May	31 Jun	01 Jun	02 Jun	03 Jun	04 Jun	05 Jun	06 Jun	07 Jun	08 Jun	09 Jun	10 Jun 11
2-yr Return Period	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	2-yr Return Period	100%	100%	100%	100%	98%	+		-		-	1.0	1.	1.			-
5-yr Return Period	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	5-yr Return Period	100%	100%	100%	100%	41	-	-	-	-			-		4	-20	69 - C
10-yr Return Period	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	10-yr Return Period	100%	100%	100%	2%	-	-	-	-		4	-	4	-	40	-	1020
25-yr Return Period	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	25-yr Return Period	100%	100%	100%	-	-	2	-	-	-	-		-	-	4	-	1.2
50-yr Return Period	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	50-yr Return Period	100%	100%	-	-	42	4	-	-		4	- ÷.	÷.,		1.	- ÷	-
100-yr Return Period	- 1	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	100-yr Return Period	d -	-	•	•	•	÷			-				100	4	•	-

Historical Simulation

Historic Streamflow Simulation reach_id: 7061884

2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 1110.12 1277.35 1388.07 1527.96 1631.74 1734.76

Additional Historic Simulation Products

Daily Average Streamflow (Historic Simulation) reach_id: 7061884

Additional Historic Simulation Products

-

Warning Points

	stream_order	stream_lat	stream_lon	<pre>max_flow</pre>	date_r2	date_r10	date_r20
comid							
7088373	2	-13.175418	34.734576	1.583960	2020-05-27 00:00:00	2020-05-27 00:00:00	2020-05-27 00:00:00
7088058	2	-12.914583	34.637917	0.783468	2020-05-27 00:00:00	2020-05-27 00:00:00	2020-05-27 00:00:00
7087329	2	-12.159113	34.319213	5.707321	2020-05-27 00:00:00	NaN	NaN
7082034	2	-7.471365	30.330647	6.314908	2020-05-27 00:00:00	2020-05-27 00:00:00	NaN
7080390	2	-6.034400	29.374605	38.883274	2020-05-27 00:00:00	NaN	NaN
7080111	2	-5.785656	37.792871	26.787642	2020-05-27 00:00:00	NaN	NaN
7080307	2	-6.021502	29.255398	80.980751	2020-05-27 00:00:00	NaN	NaN
7079969	2	-5.707459	38.573907	71.166985	2020-05-27 00:00:00	NaN	NaN
7079855	2	-5.544495	38.322260	54.125420	2020-05-27 00:00:00	NaN	NaN
7079990	3	-5.755827	38.681257	94.953659	2020-05-27 00:00:00	NaN	NaN
7079904	3	-5.681796	38.817762	124.044678	2020-05-27 00:00:00	NaN	NaN
7079814	4	-5.500474	29.555745	2732.678467	2020-05-27 00:00:00	2020-05-27 00:00:00	2020-05-27 00:00:00
7080136	5	-5.788296	27.000914	8944.719727	2020-05-27 00:00:00	NaN	NaN
7079570	2	-5.269085	29.404018	13.499873	2020-05-27 00:00:00	NaN	NaN
7079568	4	-5.333432	29.509887	2581.337646	2020-05-27 00:00:00	2020-05-27 00:00:00	2020-05-27 00:00:00

GEOGIoWS ECMWF Streamflow Hydroviewer

GEOGIOWS ECMWF Streamflow Hydroviewer = (27 \bigcirc Log In X SWEDEN RUSSI FINLAND App controls ESRI Topographic NOE WAY ESRI Terrain **Map Animation** ESRI Grey UNITED Tue Jun 23 2020 18:00:00 GMT-0600 KINGDOM Stream Network (Mountain Daylight Time) Gauge Network > = > < AZAKHSTAN VIIRS Imagery Search for a Reach ID Search for a Reach ID GREECE TURKEY Find A Reach ID Search for a Latitude/Longitude ALGERIA Enter 'latitude, longitude' EGY SAUDI Atlantic Ocean Find A Lat/Lon Location SUD CHAD About VIIRS Imagery **Bias Correction** Upload New Observation Stream Gauge Networks ANGOI Choose A Gauge Network S 20-yr Return Period Flow S 10-yr Return Period Flow NAME Indian 2-yr Return Period Flow Forecasted Streamflow Stream Line reach_id: 7061884 1st day foreca Lat: 63.07513, Lon: -118.82804 EOGIoWS ECMWF Streamflow System 2 Year: 1110 5 Year: 127 10 Year: 1388 25 Year: 152 50 Year: 1631 May 22 2020

1985

1995

2000

2005

2010

201

Different Customizations

\odot **CRRH** Portal Apps Library Hydrostats App HydroViewer Central America n Ethiopia Portal Apps Library

Apps Developer

Copyright @ 2019 Ethlopia

COLOLIDI

admin 🔒 👻

RAPID vs GloFAS

Bheri, India

Dipayal, Nepal

Rapti, Nepal

Sensitivity of Watershed Resolution

Comparison	R	MAE[m3]	KGE
MO: Low vs. Med Res	0.9375	7.3748	0.8985
MO: Med vs. High Res	0.9979	1.2713	0.9948
MO: Low vs. High Res	0.9232	8.0400	0.8928
NY: Low vs. Med Res	0.9831	0.7209	0.8954
NY: Med vs. High Res	0.9999	0.0355	0.9963
NY: Low vs. High Res	0.9813	0.7556	0.8911
OR: Low vs. Med Res	0.9939	0.9949	0.9841
OR: Med vs. High Res	0.9987	0.4330	0.9985
OR: Low vs. High Res	0.9872	1.4190	0.9799
AZ: Low vs. Med Res	0.9943	0.1244	0.9789
AZ: Med vs. High Res	0.9976	0.0844	0.9744
AZ: Low vs. High Res	0.9849	0.2014	0.9522
ID: Low vs. Med Res	0.9982	0.8860	0.9965
ID: Med vs. High Res	0.9996	0.4632	0.9949
ID: Low vs. High Res	0.9964	1.2706	0.9959
Average: Low vs Med	0.9814	2.0202	0.9507
Average: Med vs High	0.9988	0.4575	0.9918
Average: Low vs High	0.9746	2.3373	0.9424
Total Average	0.9849	1.6050	0.9616

WHOS and GEOGIoWS Global Streamflow Data Services

