Rainwater harvesting in dry environments

Training workshop on rainwater harvesting and applications in Jordan, ESCWA event, Kempinski Hotel, Amman, Jordan, 18th. of August 2021

Theib Oweis Consultant, agricultural water management Amman, Jordan Email: theib.y.oweis@gmail.com

Drylands (non irrigated) agroecosystems

 100–300 mm rainfall
 Degraded rangelands, desertification
 Severe soil moisture stress
 Sparce vegetation
 Poorer communities

- 300-600 mm rainfall
- Frequent dry spells
- Moderate soil moisture stress
- Soil erosion
- Poor productivity

Rainfed systems

Rainwater mostly lost in evaporation

- High rainfall intensity
- Low soil infiltration rates
- Poor vegetation cover
- Lack of water retaining structures
- Over 90% evaporation

Runoff water mostly lost in salt sinks

- High rain intensity for extended periods
- Land slope
- Degraded surfaces
- Soil erosion
- Mostly evaporated or salinized in salt sinks

How to benefit from this water? The concept of rainwater harvesting

THEIBOWEIS

Rainwater harvesting: definition

Concentration of rainfall from larger area into smaller one through runoff for beneficial use

Water Harvesting: system components

1. The catchment

- Micro
- Macro

4. The storage

- Surface
- Soil
- Ground

2. The runoff

- Natural
- Induced

3. The target

- Agriculture
- domestic
- industrial
- environment

Classification of water harvesting methods

Macro & micro-catchments techniques

Based on the size of the catchment area
 Usually off farm or on farm

Macro-catchments rainwater harvesting

- Large catchment, usually natural terrain
- Runoff rates are not high
- Storage can be in surface reservoirs, groundwater aquifers or soil profile
- Targets can be agriculture, domestic or environment

THEIBOWEIS

Small farm reservoirs

- Small in size
- Dams or ponds
- Issues of sediments
- Evaporation
 losses

Small water harvesting reservoirs on wadi bed

- Usually earth dams
- Need a spillway
- Sediments problem
- Capacity can be increased by moving water to soil profile and refilling

Hafaer/ livestock ponds

- Natural medium size catchments
- Seasonal ponds, mainly for livestock
- Pollution, health and safety issues

Cisterns/ underground reservoirs

- Both the catchment and the reservoir are small in size
- Cover eliminates evaporation
- Cost is high for digging and plastering
- Used for domestic, animals and home gardening

Ancient cisterns - renovation

- Clearing or compacting the catchment
- Digging out the sediments inside the cistern
- Constructing a settling basin & a gravel filtering system
- Flushing first runoff and settling basin and filtering is essential
- Can install pump and refill the cistern if needed

Wadi-bed systems

- Constructing wall across the wadi with a spillway
- Eroded fertile sediments accumulate behind the wall
- Crops grown in deep soils
- Example: Jessour in Tunisia

Water spreading systems

- Diversion structure to raise water level and divert
- Directing part or all of the water right and/or left
- Convey to agricultural lands on the side(s)
- Sediment can block the diversion canal inlet
- Check for upstream-downstream water rights

THEIBOWEIS

Micro catchment water harvesting techniques

- Small catchment area (10-100 m2)
- Short runoff runs, more efficient
- Water storage is in soil profile
- Usually on farm systems

Microcatchments

Contour ridges

- Bunds constructed on contour lines
- Manual construction high cost of labor
- Plants grow in the bund
- Spacing vary with rainfall, slope, crop & water requirements

Contours identification

- Water can flow and break ridges if not precisely on contour lines
- Using leveling machine is costly
- Simpler use of transparent hose
- Laser guiding is most effective and lower in cost

Semicircular bunds

- Bund faces slope upwards
- Bund may be Hight enough to retain maximum runoff
- Used mainly for shrubs and fruit trees
- Manually constructed, now also mechanized

Mechanization of contour ridges and bunds

- Adapting the Vallerani implement
- Providing contour laser guiding
- Can construct up to
 50 hectares a day
- Cost about 30 USD/ha

Small runoff basins (negarim)

- Rectangular/diamond shapes
- Max slope should be along the diagonal
- Trees & shrubs planted at the lowest corner
- Usually done permanently.
 Issues of weeds control with no plowing
- The size depend of the slope, rainfall and crop water requirements

Runoff strips

- Strips of alternate catchment and cropped areas
- Runoff inducement may be needed
- Used for field crops in areas with less than 350 mm annual rainfall
- Width and ratios depend on slope, rainfall, crop water requirement
- Issues of water application uniformity across the cropped area

Roaded catchments

- Artificial slope is created in flat lands to induce runoff
- Normally compaction of lose soils is needed at construction
- Generally harvested water is used for agriculture

Contour bench terraces

- Constructed on very steep slopes
- Narrow terrace are constructed usually at contour lines and supported by a wall
- Terases are grown with trees but catchment is usually left natural with little disturbance
- Famous in Yemen and Tunisia

Rooftop water harvesting

- Paved and clean house roofs with slope provide near 100% runoff coefficient
- First rain to flush out
- Gutters convey rainwater runoff to a storage tanks
- Purification/filtering of water is essential before using in households
- Green house roofs can provide water for protected agriculture

Review questions (1) check all correct answers

- A. Rainwater harvesting system is defined by:
- 1. Availability of a catchment
- 2. Occurrence of runoff
- 3. Having a mean of storage
- 4. Having a use for the water
- 5. All of the above

B. The following water harvesting systems can support agriculture?

- 1. Rooftop water harvesting
- 2. Contour ridges
- 3. Cisterns
- 4. Runoff strips
- 5. All of the above

C. Mechanization of microcatchment water harvesting is good:

- 1. To reduce cost
- 2. To save water
- 3. To improve precession
- 4. To speed implementation
- 5. To enhance employment

Part 2:

Planning, designing and implementing water harvesting projects

General considerations:

- 1. Determine the need for a rainwater harvesting system
 - Rainwater is not enough for crop water requirements & no irrigation water available
 - Livestock or households need drinking water
- 2. Involve local communities early in the planning to insure ownership
- 3. Ensure that runoff is possible and catchment is available
- 4. Ensure that the project creates no conflict of interests (i.e. Upstream downstream)
- 5. Institution/people with capacity available to operate and maintain the system
- 6. Funds are available for implementation and follow up

Planning, designing and implementing water harvesting projects

Planning, designing and implementing water harvesting projects Micro-catchments for agriculture : Runoff inducement

Increasing runoff coefficient by:

- Land clearing / smoothing
- Surface cover (plastic, concrete, asphalt, etc.)
- Compaction
- Use of chemicals (salts, water repellants)
- Increase slope

Planning, designing and implementing water harvesting projects Selection of water harvesting techniques

Guidelines for selection of micro and macro catchments systems in:

Oweis, T., D. Prinz, and A. Hachum. 2001. Water harvesting: Indigenous knowledge for the future of the drier environments. ICARDA, Aleppo, Syria. 40pp.

Document will be provided

lechnique	Crop	Soi	il	Land	Land	Cover		Socio-e	conomics		
		Depth (1)	Texture	Slope (2)	Vegetation	Stoniness (4)	Farm size (5)	Capital (6)	Labor (
Aicro-catchments											
On-farm systems											
Contour ridges	range	variable	variable	med.,steep	poor, med.	low-med.	variable	low	medium		
	trees	deep	med heavy	low med	poor med	low	small,med.	1.0			
	vegetable	med.,deep	=	"	"	1.0	small	1.0	1.1		
Semi-circular bunds	range		variable		poor	low.med.	variable		high		
(trapezoidal	field	1.00	med.,heavy	1.1	1	1.1	small, med.	1.1		-	
triangular)	trees	deep	1.1	1.1	poor, med.	low		1.00			
	vegetable	1	1	1.1			small			and the second	-
Small pits	field	1.00	1.00	1.1	poor	1.1	variable	1.1	medium		
	range	shallow, med.	1.00	1.1	poor, med.	low,med.		1			
Small basins	range	med.,deep	1.00	1.1	poor	1.1	small	1.1	high		
(Negarim)	trees	deep		low	poor, med.	1	small, med.	1	1.1		
Runoff strips	range	variable	1.00	low,med.	poor	1.1		1.00	low		
	field	med.,deep	1.00	1.00	poor, med.	1.1		1	1.00		
Inter- row system	trees	deep	1.00	Low	poor	low	large	high	medium		
(roaded catchment)	vegetable	medium	variable						1		
	field		1		"		med.,large				
Meskat (Khushkaba)	trees	deep	med.,	low,med.	poor, med.	1.1	variable	low	1.1		
	field	medium	heavy		poor		small,med.		low		-
										CAN.	- Pat
Contour bench	trees	deep	1.0	Steep				high	medium	1	
terraces	neid	medium								No. 44	1
Rooftops	drinking	na	na	na	na	na	small	1.1	medium		1
	vegetable	variable	variable			-		-			
facro-catchments											
Small farm reservoirs	all crops	variable		low mod	variable	variable	mod large	high	high	Mar	
oman farm reservous	uncrops	(and be		iow,mea.	variable	variable	mea.marge	ingit	mgn		SI
Wadi-bed cultivation	trees/	med_deen	med.	1.1	poor	Low	small.med	medium	med high	local	er
read occ curration	vegetable	menner	heavy		Poor	1.011	ontenymest.		incu./mgit		p
Jessour	trees	1.00		med steen	variable	variable	small		high	local/training	
Offerendlesselesse	acco			med.,steep	variable	variatione	ontan		ingi	iccai/ training	
Water spreading	field/trees	1.00	1.00	low med	noor	low med	variable		medium	external skill	
Lease hunds	herer trees	4		low,med.	poor	low,mea.	variable		litectrum	lass1/texterio	st
Large bunds	field	aeep			poor,med.	low	med.,large			"	
	range	shallow.med	variable	1.1	med_dense	variable	med_large	1.0	1.1		
Tanke and hafair	all crone	variablo	mod hoarn	low	variablo		"	mod high	1.0	ovtornal ekill	
ranks and natali	un crops	variable	nieu., neavy	100	variable			meu.,mgn		external skill	st
Cisterns	drinking/ trees/vegetable	deep	rock	all slopes	poor, med.	variable	small,med.	medium	high	local/training	St
The second	Cold/tese			1		1			11.1	te est destate	
rimside runoff	neld/trees	med.,deep	med.,heavy	low,med.	poor, med.	low	small, med.		high	local/training	so

Guidelines for Selecting Water-Harvest's Techniques in the Drier Enviror

shallow < 50 cm, medium: 50-100 cm; (2) low < 4%, medium: 4-12%, steep > 12%; (3) poor < 15%, medium: 15-30%, dense > 30% ow < 10%, medium: 10-25%, high> 25%; (5) small<5 ha, medium: 5-25 ha, large> 25 ha; (6) low < \$ 25/ ha, medium: \$ 25-100/ ha, high > \$ 100/ ha low < 5 man-day/ ha, medium: 5-20 man-day/ ha, high > 20 man-day/ ha; na : not applicable.

Water Harvesting

Indigenous Knowledge for the Future of the Drier Environments

e/soil

e/subsurfa rface

Planning, designing and implementing water harvesting projects Using google maps for planning water harvesting techniques

- On farm or at landscape scales
- Information on:
 - Topography
 - Crops
 - Rainfall storms amount and intensity
 - Soils physical properties
 - Runoff coefficients

Planning, designing and implementing micro-catchments water harvesting projects

Determining Catchment-Target areas ratio

Data required

- Runoff coefficient
- Crop water requirements
- Annual rainfall amounts
- Soil water holding capacity

Determining Catchment-Target ratio

V = Volume (annual)
ET = Evapotranspiration (annual)
R = rainfall (annual)
a = cultivated area
A = catchment area
Rc = Runoff coefficient

$$V_{deficit} = (ET - R) * a$$
(1)
 $V_{harvested} = A * R * Rc$ (2)

By equating (1) and (2):

A * R * Rc = (ET - R) * a(3)

 $A/a = (ER-R)/(R^*Rc)$ (4)

Total seasonal depth of water supplied to the cropped area = Direct Rain on the cropped area + (Volume of harvested water / cropped area)

Determining Catchment-Target ratio

Area ratio (A/a) for micro-catchment water harvesting:

- 400 mm crop seasonal consumptive
- 160 mm mean seasonal rainfall
- Different runoff coefficients

Runoff	Area	Catchment	Cropped area		
Coefficient	Ratio	Area " A" per	"a" Per 100m2		
" Rc"	A:a	100 m2 plot	plot		
0.5	3 :1	75 m2	25 m2		
0.3	5:1	83.3 m2	16.7 m2		
0.2	7.5 : 1	88.2 m2	11.8 m2		

Implementation: The rangelands restoration package development

- Package developed through research by ICARDA in partnership with NARC and local communities
- Based on mechanizing contour bunds and ridges by adapting the Vallerani implement to the badia conditions
- Laser guiding was added to avoid manual contour identification and cost
- 20-4 ha/day was possible to construct
- Cost per ha was 32 US\$ when completed.

Implementation: The rangelands restoration package elements

1. Site selection:

> Annual rainfall from 100 to 250 mm

Soil depth of more than 60 cm

- Slope from 1%-20%
- Vegetation less than 25%

2. Agreements with farmers/land owners before bunds and contour ridges design (spacings) and construction is done before the onset of rain

3. Indigenous shrubs seedlings be prepared in nurseries during the development year (should not exceed on year of age) and planted in the bunds immediately after the first rain and runoff

4. Site should be protected from grazing by farmers/owners for 2 years

5. After two years herds can be allowed with gradual numbers according to shrubs developing carrying capacity

Training manual for planning, design and implementation of Micro-catchment water harvesting

- Under development & should be ready in a month
- Will focus on planning, design and implementing micro catchment systems for agriculture
- Will use step by step procedure with examples from the region including:
 - Selecting the appropriate site
 - Collecting required information
 - Determining suitable crops and techniques
 - Determining runoff coefficients
 - Determining catchment target ratios
 - Layout of the system
 - Implementation
 - Maintenance
- Will include relevant illustrations

Training Manual

For

Micro-catchment Water Harvesting

Planning, design and implementation

Prepared by ESCWA 2021

Review questions (2) check all correct answers

- A. Runoff coefficient is higher with:
- 1. Sandy soils
- 2. Steeper slope
- 3. Higher infiltration rates
- 4. Larger catchment
- 5. Longer period of rain
- B. Spacings between contour ridges should be larger when:
- 1. Runoff coefficient is higher
- 2. Slope is larger
- 3. More livestock grazing
- 4. Rainfall is lower
- 5. All of the above

- C. Vallerani rangelands restoration package may not perform well unless:
 - 1. The site is properly selected with annual rainfall greater than 100 mm
 - 2. The seedlings age is less than one year
 - 3. The planting is made after the occurrence of first runoff
 - 4. The site is protected for 2 years with proper grazing management afterwards
 - 5. All of the above