EFFICIENCY-IMPROVING TECHNOLOGIES: FINANCIAL PERSPECTIVE

Water-Energy Nexus Operational Toolkit : Resource Efficiency

20/02/2017

Economic and Social Commission for Western Asia

Prof. Hassan Arafat ESCWA Consultant

UNITED NATIONS

ESCWA

Outline

Savings due to various technologies

Economic incentives for more efficient consumer use Key messages

© Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Typical energy savings and payback periods for best practices

Best practices	Typical energy savings of unit of process (%)	Typical payback years							
General									
Real-time energy monitoring	5-20	Variable							
Electric peak reduction	Variable	< 1							
Electric motors: install high efficiency motors	5-10	< 2							
Electric motors: variable frequency drive applications	10-40	0.5-5							
Pumps: optimize pump system efficiency	15-30	0.25-3							
Wastewater									
Staging of treatment capacity	10-30	<2							
Optimize aeration system 30-70		3-7							
Fine-bubble aeration	20-75	1-5							
Variable blower air flow rate	15-50	< 3							
Dissolved oxygen control	20-50	2-3							
Blower technology options	10-25	1-7							
Biosolids mixing options in aerobic digesters	10-50	1-3							
Anoxic zone mixing options	25-50	3-5							

Large-scale commercial desalination

Process	Thermal energy kWh/m ³	Electrical energy kWh/m ³	Total energy kWh/m ³	Investment cost US\$/m³/d	Total water cost US\$/m ³	
MSF	7.5-12	2.5-4	10-16	1200-2500	0.8-1.5	
MED	4-7	1.5-2	5.5-9	900-2000	0.7-1.2	
SWRO	-	3-4	3-4	900-2500	0.5-1.2	
BWRO	-	0.5-2.5	0.5-2.5	300-1200	0.2-0.4	

- Costs of different technologies are site-specific and fuel-specific.
- In general, compared to membrane-based desalination processes, thermalbased desalination processes:
 - Use more expensive materials and equipment.
 - Require more chemicals.

Energy savings through CAPEX & OPEX reduction with higher productivity membranes

Source: Busch and Mickols, 2004.

Integrating water and energy efficiency measures

Source: Cutter et al., 2014.		Savings				
Measure	Cost (\$)	End-use energy (kWh)	Water (Gallons per day (GPD))	Useful life (years)	Benefit /cost ratio	
LED lighting	206	336		12	1.8	
Clothes washer (single family)	205	110	17	10	0.5	
High efficiency toilet - low use	265		20	20	0.6	
High efficiency toilet - high use	265		60	20	1.4	
Weather based irrigation controller - small	300		72	10	0.5	
Weather based irrigation controller - large	700		629	10	3.6	

Findings of the case study:

- Cost-effective opportunities for efficiency tend to be overlooked without an integrated water-energy cost-effectiveness framework.
- Several measures fail cost-effectiveness tests when viewed from an energy or water utility perspective alone, but they pass under an integrated approach.

© Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

The UAE private sector

Do you track the consumption of energy and water in your office space?

The UAE private sector

The UAE private sector

Does your company set targets to reduce electricity and water?

The UAE private sector

Please describe the reasons your organization has not yet implemented efficiency measures.

Said little senior management buy-in

Said they could not find the appropriate products for their needs

Said efficiency was a low priority for their organization

Said they had a lack of expertise to implement efficiency measures

Said there is a lack of funding

Have not considered it yet

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Key messages

- There tends to be much variation in energy savings and payback period for different strategies for the water sector.
 - Such variation shows the potential complexities involved in implementing these strategies due to the many parameters to be considered.
- Cost sharing between energy and water utilities must be facilitated in support of efficiency measures.
 - Water avoided costs must be considered with embedded energy analysis.
- By regulating tariffs more effectively:
 - The investment required for the adoption of more energy- and waterefficient technologies can be facilitated
 - End-use consumption can be better influenced.

THANK YOU

Economic and Social Commission for Western Asia

UNITED NATIONS

الاسلوا **ESCWA**