

The Climate Proofing approach: Rationale, methodology and potential benefits

Prepared by Tom Eickhof: Advisor, GIZ Competence Centre for Climate and Environmental Policy, Germany

Workshop on Climate Change Adaptation in the Economic Development Sector Using Integrated Water Resources Management (IWRM) Tools
Amman, 25-27 May 2016

Outline

- Impacts of climate change on projects
- Why climate proof projects?
- Opportunities for climate proofing (CP) in the MENA region
- Scope and target groups
- Decision making at policy level
- CP needs an enabling institutional framework
- Conclusion

Introduction and background

- Need for integration of climate change into water investments for sustainable development
- Significant opportunities for :
 - Mobilizing capital in international financial markets
 - Sparking innovation in the water (and energy) sector
 - Supporting private sector development
 - Realising 'green' job potentials

Impacts of climate change on projects

Source: Stattford Smith et al. 2011

more than 1m sea-level rise possible over twenty-first century

Impacts of climate change on projects

Impacts of climate change on projects Some CC impacts on various dimensions of a project:

- Failing assets and reduced design life, risk of damage
- Increasing operational costs and need for additional capital investment
- Loss of income
- Reputation damage at several levels
- Changing market demand for goods and services
- Increasing insurance costs or lack of insurance availability

•

Example: Amman Floods (November 2015)

A heavy rain episode that lasted for 30 minutes resulted in floods, loss of electricity, loss of lives, property and damage to rain water and sewer transfer networks

Example: Flash floods in Iraq in 2011

- Heavy rains in various areas of the country led to massive flooding
- Most houses were destroyed due to poor infrastructure
- Power stations had to be switched off due to water intrusion
- Frequency of flash floods is expected to increase due to snow melting

Source: reliefweb.int

Global natural disasters 1980-2012

Insurance losses & costs are increasing

Overall losses and insured losses 1980-2013 (in US\$ bn)

Why climate proof projects?

Why climate proof projects?

Objective of climate proofing: Develop, implement and monitor robust water investments that are resilient to climate variability and to ensure long-term sustainability.

Reasons for climate proofing:

- Increase performance and sustainability, e.g. reducing structural failure or disruption of operations/services, secure inputs (water supply), meet future demand...
- Avoid lock-in situations & path-dependencies causing adverse socio-economic impacts, limited flexibility, high costs for re-active adaptation measures
- Will increasingly become prerequisite for funding from public financial institutions, commercial banks and for insurers

The added value of adaptation – Example: Flood protection for the city of

Copenhagen

- More frequent and heavier rainfalls in the near future → sewer system needs to be expanded
- Sea-level & frequency of storm surges expected to rise → dikes need to be established & building levels raised
- Copenhagen Climate Change Adaption Plan (2011)
- Risk assessment & cost-benefit-analysis have shown net benefit of € 2.4-3.4 billion DK (100 year-period):
 - Expected damages: € 4-4.7 billion
 - Adaptation measures: € 1.3-1.6 billion

Vulnerability to flooding in Copenhagen from extreme rainfall events

Source: European Commission 2013

The added value of adaptation – Example: Copenhagen

Table 13: Net present values for rising sea levels (1 meter in 100 years) in million DKK

Table 14: Net present values for extreme rainfall in million DKK

Alternative scenarios	NPV
Damage cost without measures	15,552
Damage cost with cheapest measure (non-return valves)	4,316
Damage cost with most expensive measure (increased sewer network capacity)	5,458
Cost of cheapest measures (non-return valves)	3,001
Cost of most expensive measure (increased sewer network capacity)	10,372
Net gain - cheapest measure	8,235
Net gain - most expensive measure	-278

Outroo. Europouri Commiscioni 2010

Opportunities for climate proofing

- Rising awareness and growing political will to achieve climate resilient development
- Realize green growth potentials and job opportunities
- Significant, climate-smart investment opportunities for PPP and private sector
- Existence of mandatory EIA in several MENA countries
- International climate finance opportunities for "climate proofing pilots"

Climate proofing is increasingly

applied...

...and included in national legislation. Example: EU guideline

www.acclimatise.uk.com/network/article/new-eu-directive-requires-climate-change-to-be-considered-in-environmental-impact-assessments NEWS / New EU Directive requires climate change to be considered in environmental impact assessments 2014 Category: Defence & Security, Energy, Financial Services, Government & Policy, Health & Pharmaceuticals, Manufacturing, Oil, Gas & Extractives, Retail & Supply Chains, Transport & Communications, Water & Sanitation Share | W In F

Review of the EU
Directive
on Environmental
Impact
Assessment (EIA):

Climate risks are now to be included in member states' national EIAs by 2016.

Example: Asian cities to introduce climateproofing

- Asian Cities Climate Change Resilience Network (ACCCRN) set up in 2008 as a response to urbanization and related climate risks
- New project in 2012: 10 cities in India, Vietnam, Thailand and Indonesia assessed their own resilience
- Indicators: broad mix of scientific and socioeconomic factors, both qualitative (e.g. existence of a coordinating body for city planning) and quantitative (e.g. leakage rates in water supplies)

Climate proofing scope and target groups Scope:

- For newly planned or already existing projects
- For 'regular' water sector projects and explicit 'adaptation projects'
- Broad and generic approach → needs modification to respective national context!
- Presents flexible, dynamic tool that will be regularly updated and become more specific

Climate proofing scope and target groups

Main target group: Project developers, planners, and managers of ...

- national public water sector institutions
- other, closely linked sectors (agriculture, energy, infrastructure etc.)
- private sector

The 4 steps for climate proofing projects

Main steps

Step 1
Project vulnerability
screening

Is the project sensitive to climate change impacts?

If Yes

Step 2
Detailed vulnerability
assessment

Step 3
Options for adaptation

Step 4
Integration into project and
M&E system

Sub-steps

Identify key climate variables and climate trends, and project exposure units

If there is no indication for considerable sensitivity to climate change, no detailed assessment is required.

Step 2.1: Gather available climate information

Step 2.2: Assess biophysical and socioeconomic effects

Step 2.3: Evaluate the impact of the effects on the project's objective

Step 2.4: Assess the risk and relevance for project planning

Step 3.1: Identify adequate adaptation options

Step 3.2: Evaluate and prioritize adaptation options

Step 4.1: Adapt or redesign the planned project

Step 4.2: Design a monitoring and evaluation plan

Step 4.3: Feedback into project cycle, policy making and knowledge management processes

Entry points for CP within a general project cycle

"Consideration of climate change impacts at the planning stage is key to boosting adaptive capacity" (IPCC 2007)

Climate Proofing Guidelines

The tool presented is based on the Guideline for climate proofing water investments in the MENA region (draft version)

Each step (Steps 1 – 4) of the proofing tool suggested includes multiple sub-steps

Step 1

Project vulnerability screening

Goal: Assess whether (a) the project is vulnerable to climate variability and change and (b) the project's operations may adversely affect the human or natural system's sensitivity to climate change.

Identify key climate variables and trends, and project exposure elements:

- Climate variable trends: temperature, precipitation, extreme weather events (droughts, floods), sea-level rise, ...
- **Exposure elements** (inputs, infrastructure, operations, outputs, distribution networks,...) particularly vulnerable to changing climate variables

Options for rapid vulnerability assessment (based on expert opinion)

- Rapid risk screening tools developed by various organizations
- Simple checklists

Step 2

Detailed vulnerability assessment

Goal: Based on the initial vulnerability screening, conduct a detailed climate vulnerability assessment to evaluate the potential impacts of climate change on the project's objective as a basis for identifying specific adaptation options.

Step 2.1: Gather available climate information

- Up-to-date regional climate information on present climate variability and future climate change trends
- Ideally provided by specialised, central unit/department of a relevant national or regional institution responsible for climate data generation, collection, preparation, and dissemination

Step 2 cont.

Detailed vulnerability assessment

Step 2.4: Assess the risk and relevance for project planning

- Qualitative assessment of the project's risk to the climate change impacts and evaluation of the relevance for planning
- Assigning different risk levels through estimation and scoring (e.g. high, moderate, low risk) to each one of the impacts identified by estimating and scoring

Step 2: Detailed vulnerability assessment – Risk matrix

Assign risk scores:

- magnitude of the consequence of climate impact
- likelihood of occurrence of climate impact are then combined and visualized

		Magnitude of consequence of climate impact on project				
	Likelihood of occurrence of climate impact on project	1- Insignificant Impact can be absorbed through normal activity	2- Minor Adverse event, but can be absorbed	3- Moderate Serious event requiring additional actions	4- Major Critical event requiring extraordinary actions	5- Catastrophic Disaster with potential to lead to closure/ collapse
Incident is very likely to occur, possibly several times	5- Almost certain			Impact No. 1, 2		
Incident is likely to occur	4- Likely			Impact No. 4		
Incident has already occurred in same region /setting	3- Moderate				Impact No. 3	
Given current practices and procedures, incident is unlikely to occur	2- Unlikely					
Highly unlikely to occur	1- Rare					

Step 3

Options for adaptation

Goal: Identify options for adaptation measures responding to the <u>most significant</u> impacts according to the risk assessment, making use of the opportunities presented by climate change.

Step 3.1: Identification of adaptation options

 Qualitative assessment of different adaptation options based on selection criteria: effectiveness, no-regret, flexibility, economic aspects, robustness, equity, political and social acceptance etc.

Step 3.2: Evaluation and prioritisation of specific adaptation options

 Quantitative evaluation (economic assessment) & prioritization of the shortlisted adaptation options for the project

Step 4, condensed

Integration of adaptation measures into project and M&E system

Goal: Integrate selected adaptation options into project design and implementation stage of the project cycle. Set-up a monitoring and evaluation plan/system and feed back experiences into the project cycle.

Step 4.1: Adapt or redesign the planned project

- Modification of original technical project design & management options
- Identification of additional technical support & capacity development measures
- Development of communication and stakeholder consultation plans
- Elaboration of a financing plan integrating climate risks and uncertainties

Step 4.2: Design a monitoring and evaluation plan

- For implementation process of selected adaptation options
- For the progress and success of the adaptation options

Step 4.3: Feedback <u>M&E results</u>, <u>lessons learnt</u> and <u>good practices</u> into policy-making & knowledge management processes

Adaptive decision points for each project cycle step

Life cycle phase	Example adaptive decision points
Policy and planning	Location of asset Capacity of asset Design life of asset Funding mechanisms and risk sharing Design codes and construction standards
Conceptual design	Conceptual design parameters Conceptual modeling Investment plans
Detailed design	Detailed design parameters Modeling Environmental impact assessment Financial evaluation Cost-benefit analysis
Construction and establishment	Construction methods/materials Source: UNDP 2011
Asset management	Maintenance program
Monitoring and adaptation	Retrofitting

Decision-making under uncertainty

General principals to guide development of adaptation options:

- No-regret/ low-regret approach: delivering net socio-economic benefits irrespective of the nature of future climate
 - concentrate on win-win opportunities and synergies with closely interlinked sectors for simultaneous <u>adaptation and mitigation</u> options (water-energy nexus)
- Robust adaptation: targeting today's climate variability that also offer major cobenefits under predicted future climate change projections
- **Soft adaptation:** flexible reaction to changing circumstances, **including o**ptions focusing on institutional systems and knowledge
- Adaptive management: flexible management approaches that evolve and adjust as (climatic) circumstances and scientific knowledge change

And under policy certainty...

 Paris Climate Agreement-Countries need to develop NAPs

Preparation of NAPs

Climate Proofing a key component of NAPs

CP needs an enabling institutional frameworks

Climate proofing requires strong political leadership and commitment:

- Institutional structures for the preparation of climate information (e.g. climate research, data generation, monitoring, capacity development)
- Cross-sectoral coordination
- Additional financial resources for risk assessment and adaptation
 (→ climate finance)
- Implementation of Strategic Environmental Assessments (SEA) and Environmental Impact Assessments (EIA)

Source: Verner et al. 2012

CP needs an enabling institutional frameworks

Conclusions

- High vulnerability to climate change accounting for significant economic losses already today
- Need for considerable climate resilient future water investments for closing the water gap and reducing CC impacts
- Significant opportunities for technological, socioeconomic and institutional innovation and sustainable development

Thank you for your attention

