Mapping forcibly displaced
people at high resolution
using machine learning-and
satellite-derivative datasets
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Background

O At the end of 2023, an estimated
117.3 million people worldwide were
forcibly displaced due to persecution,
conflict, violence, etc

O According to the UNHCR report,
forced displacement has continued to
increase in the first four months of
2024 and by the end of April 2024 is
likely to have exceeded 120 million.

0 Atotal of 11.7 million people in the
MENA region are expected to be
displaced within their country in 2024.




Forced displacement data challenge and intervention

O High-quality baseline population data disaggregated down to local levels are fundamental for many
applications, including needs assessment, planning and delivery of public services and response to
disasters.

O Most of the short-term population change in many current and ongoing crises is caused by forced
displacement. Forced displacement data, however, are complicated and often difficult to align with
other sources of population, demographic, and humanitarian data.

O While datasets from Government and UN agencies such as UNHCR, OCHA, IDMC and IOM provide
valuable insights, their granularity is often limited to administrative levels 1 or 2.

O This lack of detailed data poses significant challenges for policymakers, urban planners, national
survey and researchers.

O Failure to reach displaced people will impede the Sustainable Development Goal's (SDGS)

advancement and have negative effects on the peace and security of nations
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Preparation for the
geospatial modelling
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Pixel based
predictions
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Data Augmentation
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Shelter edges
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Example of forced displacement database

UNHCR proGres Database:

O proGres database is developed by the United Nations High Commissioner for
Refugees (UNHCR), which records all refugees defined as “individuals who are
outside their country of origin and who are unable or unwilling to return there
owing to serious threats to life, physical integrity or freedom resulting from
generalized violence or events seriously disturbing public order”

O The granularity of the proGres data varied from one country to another and it is
not available for all countries.

O At the end of March 2023, Cameroon had over 480,000 refugees and asylum
seekers

O Inside the refugee camps in Cameroon, the data was comprehensive and
detailed, but it was only available at the adm3 level for the rest of the country.

O With this level of the data, policy making decision, intervention and household
survey will face critical challenges to reach these vulnerable population

subgroups.
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Data input: settlement maps

WorldFop

SATELLITE 150 WORLD SETTLEMENT
IMAGERY

FOOTPRINT

GLOBAL HUMAN GOOGLE OPEN
SETTLEMENT LAYER BUILDINGS

= Manual digitisation

EXAMPLE OF A SETTLEMENT MAP ASSESSMENT IN A UNHCR-LED SITE.
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https://www.researchsquare.com/article/rs-3772487/v1

Data input: Covariate preparation

WorldFop
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https://www.researchsquare.com/article/rs-3772487/v1

ESTIMATING GRID-CELL WEIGHT CONVERTING TO GRID-CELL COUNT
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https://www.researchsquare.com/article/rs-3772487/v1

Outcome: covariates importance

WorldFop
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COVARIATE IMPORTANCE IN MODELLING REFUGEES. CV STANDS FOR COEFFICIENT OF VARIATION.
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Outcome: fine-resolution

OUTSIDE SITES

Garoua

refugee map

COMPARISON OF THE HIGH-RESOLUTION
MAPPING WITH UNHCR CONVENTIONAL
REFUGEE MAPPING REPORT AND UNHCR
INTERACTIVE MAPPING

toc0c0] °
)

T

WO I I d F".O p Darin et al 2024

Douala

Lolo

Esri, © OpenStreetMap contributors, HERE, Garmin, USGS

Timangolo

INSIDE SITES

Dasymetric Mapping Result

S =3
S T

UNHCR St

andard Report


https://www.researchsquare.com/article/rs-3772487/v1

What for?
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https://www.researchsquare.com/article/rs-3772487/v1

Mapping Internally
Displaced People
(IDP) at high
resolution
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Example of IDP datasets in Nigeria

International Organisation for Migration-
Displacement Tracking System (IOM-DTM)

Internal Displacement Monitoring Centre (IDMC)

1 GeoJSON XLSX
2 142 records 1637 records
3 44 attributes (columns) 109 attributes (columns)
4 Years: 2023, only Years: 2014-2020, 2021, 2022,2023
5 No sex/age data No sex/age data
Reasons: Flood, Mixed disasters, Non-International armed Reasons: Banditry and Kidnapping, Communal clashes,
6 conflict (NIAC), Other situations of violence (OSV), Rogue Herdsmen attack, Insurgency, Natural disaster

Wave, Storm

Origin: file only https://www.internal- Origin: file and API https://dtm.iom.int/datasets
displacement.org/database/displacement-data/
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https://www.internal-displacement.org/database/displacement-data/
https://dtm.iom.int/datasets

IDMC data visualisation

IDMC Raw Data Visualization (point layer)
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IDMC — Linking to Administrative Boundaries
(Origin)

IDMC — Linking to Administrative Boundaries
(Destination)

1 IDMC Orig
() IDMC Dest




IDMC data Pros & Cons

IDMC - Promising, but low granularity T (
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O Origin/Destination Point Data > { A, =
A Abundant Attributes 6 "
cons. e ]
A Low Granularity —73 ; -
QA Limited Timeframe (currently, only 2023 for VEIIPSS ) ﬂﬂﬂ e

e

ﬂii;i:

2N

Nigeria) &
O Inconsistency in Origin/Destination Data

0 Complex Data Model = IDMC Orig

() IDMC Dest

WorldFop



IOM-DTM data visualization

DTM Raw Data Visualization (point layer)

DTM — Linking to Administrative Boundaries DTM - Linking to Administrative Boundaries
(Origin) (Destination)
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Improve IOM-DTM granularity
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|IOM DTM State/LGA/Ward Names — GRID3 Admin 1/2/3 Polygons

DTM Roun Date of As<Kl's

R12
R12
R12
R12
R12

O

O

45215
45210
45213
45213
45211

Population TypesRegion  State

3 |IDPs dispersed in North cemi Benue

2 IDPs dispersed in North cent Benue
3 IDPs dispersed in North cent Benue
4 IDPs dispersed in North cent Benue
4 1DPs dispersed in North cent Benue

SLGA IWard \SSite Name d
NLogo IMBAGBER IElkyochi wardname
NMakurdi  INORTH BANK|  TEAkuundu Ityough 1004 / Aboyade
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Aagba

“ rdco lganame lacoc  statename
L.. EtiOsa 2. Lagos
A.. Ogbaru 4.. Anambra
O... Boripe 3.. Osun

State DTM == State Adm1 -> define the state polygon A from Adm 1,
LGA == LGA Adm1 and LGA within the polygon A -> define the LGA

polygon Bfrom Adm 2,

Select all wards from Adm 3 within the polygon B, find:

a ward with an equal name,

If no, remove all non-letter symbols and convert to the lower case,

o check for equal names (lower case) or the names with the Levenshtein

distance < 4 and <30% of the string length.




IDPs Origin

IDPs Destination

Improve IOM-DTM granularity
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Geospatial Modelling
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Gridded IDP Output Disaggregation: IDPs (100m)

IDP Data

g ure o o |
JECCHC IDPs Origin R IDPs Destination

IDPs Destination

World F’.Op IDPs Destination
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Gridded IDP output

IDPs Destination

IDPs Origin

IDPs Origin and Destination
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Why iIs an IDP map at
high resolution
necessary?

Our modelling output includes high-resolution IDP
maps, which provide detailed insights into the
distribution of displaced populations. For example,
by overlaying satellite images, we can zoom in on
specific areas to demonstrate the improved
accuracy and granularity of our data.

High-resolution IDP maps offer several benefits:

O Flexibility to aggregate data to any geographic
boundary.

U Easier identification of IDP locations.

Q0 Enhanced utility for future national household
surveys on IDPs.

O Improved resource allocation and policy
planning.

O The IDP estimates can be break down by age
and sex

U Enhances outreach to a particular age and
gender group (Maximise inclusion)




Automatic preEA boundary workshops and trainings

Thank You

Contact: Sarchil Qader

Email: S.Qader@soton.ac.uk
Twitter: @SarchilQ

WorldPop: @WorldPopProject

https://www.worldpop.org/
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