

# HYDROPOWER FROM NON-RIVER SOURCES: THE POTENTIAL IN LEBANON

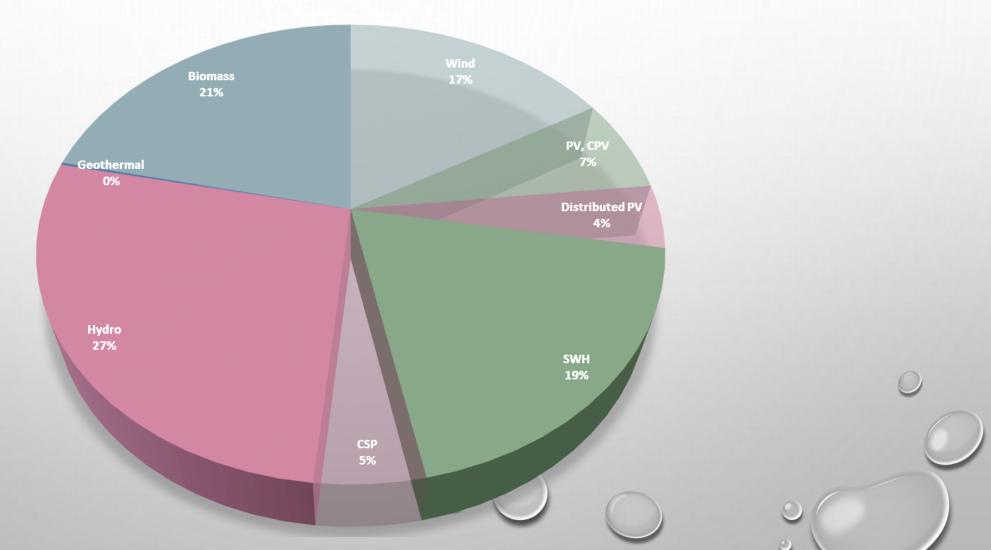
JOSEPH AL ASSAD

FINAL REGIONAL POLICY WORKSHOP ON THE WATER-ENERGY NEXUS BEIRUT, LEBANON, 11-12 DECEMBER 2017





- UNSTABLE POLITICAL AND SECURITY SITUATIONS
- ELECTRICITY SHORTAGES
- 75% OF ELECTRICITY FROM HYDRO BEFORE 1975
- ABUNDANT WATER RESOURCES
- NEED FOR ANY TYPE OF ELECTRICITY PRODUCTION
- COMMITMENT OF 12% TARGET


# HYDRO ELECTRICITY IN LEBANON: INSTALLED CAPACITY

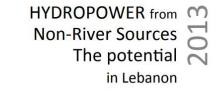
| RIVER STREAM             | ESTABLISHMENT                                                                        | PLANT NAME      | YEAR | INSTALLED CAPACITY          | MW  | REMARKS                                                  |
|--------------------------|--------------------------------------------------------------------------------------|-----------------|------|-----------------------------|-----|----------------------------------------------------------|
| LITANI AWALI<br>RIVERS   | LITANI WATER AUTHORITY                                                               | MARKABI         | 1961 | 1 x 17.9 MW + 1 x 19 MW     |     | In Service - Will be affected<br>by Conveyor 800 Project |
|                          |                                                                                      | AWALI           | 1964 | 3 x 37.76 MW                | 199 |                                                          |
|                          |                                                                                      | JOUN            | 1967 | 2 x 24.65 MW                |     |                                                          |
|                          | SOCIETE PHOENICIENE DES<br>FORCES DE NAHR IBRAHIM<br>DES EAUX ET ELECTRECITE         | CHOUANE         | 1961 | 2 x 7.5 MW                  |     | In Service - Needs<br>Rehabilitation / Upgrade           |
| NAHR IBRAHIM<br>RIVER    |                                                                                      | YAHCHOUCH       | 1955 | 2 x 4.984 MW + 1 x 2.464 MW | 32  |                                                          |
|                          |                                                                                      | FITRI           | 1951 | 3 x 1.664 MW                |     |                                                          |
|                          | LA KADISHA - SOCIETE<br>ANONYME D'ELECTRECITE<br>DU LIBAN NORD S.A.L.<br>(EDL OWNED) | BECHARE         | 1924 | 2 x 0.82 MW                 | 21  | In Service - Needs<br>Rehabilitation / Upgrade           |
|                          |                                                                                      | MAR LICHA       | 1957 | 3 x 1.04 MW                 |     |                                                          |
| WADI KADISHA             |                                                                                      | BLAOUZA II      | 1961 | 3 x 2.8 MW                  |     |                                                          |
|                          |                                                                                      | ABU-ALI         | 1932 | 2 x 2.72 MW + 1 x 2.04 MW   |     |                                                          |
|                          | AL BARED CONCESSION                                                                  | AL BARED 1      | 1936 | 3 x 4.5 MW                  | 17  | In Service - Needs<br>Rehabilitation / Upgrade           |
| NAHR AL BARED            |                                                                                      | AL BARED 2      | 1936 | 1 x 1.2 MW + 1 x 2.5 MW     |     |                                                          |
| SAFA SPRING              | ELECTRECITE DU LIBAN                                                                 | RICHMAYA - SAFA | 1931 | 2 x 3.1 MW + 1 x 6.8 MW     | 13  | In Service - Needs<br>Rehabilitation / Upgrade           |
| TOTAL INSTALLED CAPACITY |                                                                                      |                 |      | 282                         | MW  |                                                          |

# HYDRO ELECTRICITY IN LEBANON: SHARE OF ELECTRICITY

| Plant                 | Net Installed Capacity<br>MW | Current Yearly Production<br>GWh | Rehabilitated Plant<br>Yearly Production GWh |
|-----------------------|------------------------------|----------------------------------|----------------------------------------------|
| Zouk                  | 607                          | 1,897                            | 3,164                                        |
| Jieh                  | 327                          | 1,218                            | 1,704                                        |
| Deir Ammar            | 450                          | 2,977                            | 3,275                                        |
| Zahrani               | 450                          | 2,984                            | 3,283                                        |
| Baalbek               | 64                           | 166                              | 186                                          |
| Tyr                   | 72                           | 187                              | 209                                          |
| Hrayche               | 70                           | 200                              | 364                                          |
| Total Thermal         | 2,040                        | 9,629                            | 12,185                                       |
| Kadisha Hydro         | 21                           | 72                               | 82                                           |
| Litani                | 199                          | 680                              | 775                                          |
| Nahr Ibrahim          | 32                           | 92                               | 105                                          |
| Bared                 | 17                           | 54                               | 62                                           |
| Richmaya              | 13                           | 20                               | 23                                           |
| Total Hydro           | 282                          | 918                              | 1,047                                        |
| Total Thermal & Hydro | 2,322                        | 10,547                           | 13,232                                       |
| % of Hydro Ener       | ду                           | 8.70%                            | 7.91%                                        |

#### NREAP: 12% TARGET IN 2020




# EXAMPLE OF THE WATER-ENERGY NEXUS IN LEBANON

- CONVEYOR 800 PROJECT: SUPPLIES OVER 90 VILLAGES AND APPROXIMATELY 15.000 HA OF POTENTIALLY PRODUCTIVE FARMLAND WITH WATER FROM THE NEARBY LITANY RIVER AND QARAOUN DAM
- THE PROJECT WILL BRING 110 MILLION M3 OF WATER A YEAR FROM THE LITANY RIVER THE NATION'S LARGEST SOURCE OF FRESH WATER
- 52 KM LONG MAIN CONVEYOR 800, WITH SOME 60 KM OF SECONDARY CONVEYORS (BOTH GRAVITY AND PUMPED) TO TRANSPORT THE WATER TO THE HEAD OF THE INDIVIDUAL IRRIGATION PERIMETERS
- WILL REDUCED HYDRO ELECTRIC PRODUCTION OF EXISTING POWER PLANT SUBSTANTIALLY

# HYDROPOWER FROM NON-RIVER RESOURCES: THE STUDY

- STUDY CONDUCTED IN 2013 BY UNDP CEDRO PROJECT
- PART OF THE RENEWABLE ENERGY POTENTIAL ASSESSMENT
- ADOPTED BY THE NREAP
- PART OF THE 12% TARGET SET BY THE LEBANESE GOVERNMENT
- IDENTIFIED AROUND 5 MW OF POTENTIAL





# STUDY METHODOLOGY

- INSPECTION OF AROUND 20 SITES ALL OVER LEBANON
- AS A RESULT, 7 SITES HAVE BEEN FOUND NOT TO QUALIFY FOR FURTHER ACTION: THESE SITES EITHER HAVE ONLY MINOR POTENTIAL (WITHIN THE RANGE OF PICO-HYDRO) OR THEY ARE TECHNICALLY NOT FEASIBLE.
- THE REMAINING 13 SITES SELECTED FOR FURTHER ACTION HAVE BEEN EVALUATED FROM A
   TECHNICAL AND ECONOMIC PERSPECTIVE

# STUDIED RESOURCES

- FOUR TYPE OF RESOURCES STUDIED:
  - IRRIGATION CHANNELS AND CONVEYORS
  - WASTE WATER TREATMENT PLANTS
  - ELECTRIC PP OUTFALL CHANNELS
  - MUNICIPAL WATER DISTRIBUTION NETWORKS

# **IRRIGATION CHANNELS AND CONVEYORS**

- THE PRIMARY FUNCTION OF THIS SOURCE IS IRRIGATION, WHICH NEEDS TO BE MAINTAINED AT THE REQUIRED MINIMUM PRESSURE AND FLOW.
- THE PRODUCTION OF ELECTRICITY IS ONLY RANKED SECOND AND MUST NOT UNDERMINE THE PRIMARY FUNCTION IN ANY WAY.
- THE HYDROPOWER PLANT HAS TO BE DESIGNED IN A WAY TO MAKE OPTIMUM USE OF AVAILABLE HEAD AND FLOW AT DIFFERENT IRRIGATION REGIMES.

#### WASTE WATER TREATMENT PLANTS

- THERE ARE TWO POSSIBILITIES FOR USING THE HYDROPOWER POTENTIAL IN SUCH SYSTEMS
- ONE IS TO INSTALL A TURBINE AT THE INLET OF THE WASTEWATER TREATMENT PLANT, USING UNTREATED WASTEWATER.
- THE OTHER IS TO USE THE POTENTIAL OF THE TREATED WASTEWATER BEFORE IT IS RETURNED INTO THE RECEIVING WATER.

## ELECTRIC PP OUTFALL CHANNELS

- LARGE THERMAL POWER PLANTS REQUIRE SIGNIFICANT AMOUNTS OF COOLING WATER.
- COOLING WATER IS NORMALLY TAKEN FROM THE SEA, PUMPED TO A HEAT EXCHANGER, AND RETURNED VIA THE OUTFALL PIPES TO THE SEA.
- THE AVAILABLE HYDROPOWER POTENTIAL DEPENDS ON THE SPECIFIC SITUATION AND TOPOGRAPHY AT THE RESPECTIVE THERMAL POWER PLANT.
- FOR EXAMPLE, A TURBINE CAN BE INSTALLED AT THE OUTLET OF THE DISCHARGE COOLING WATER SYSTEM AT A THERMAL POWER PLANT.

# MUNICIPAL WATER DISTRIBUTION NETWORKS

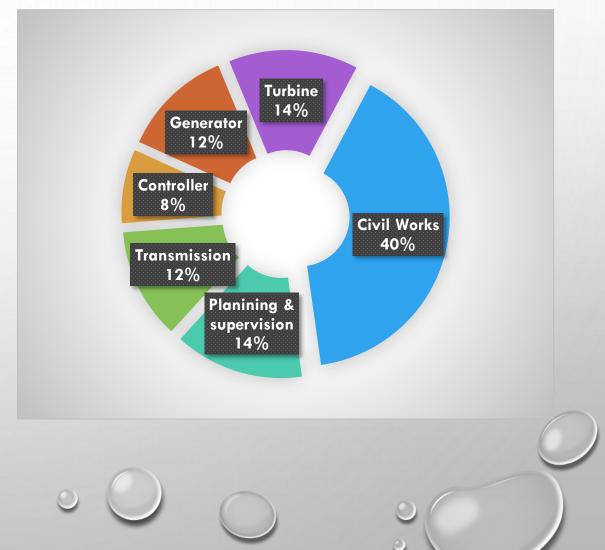
- THE PRIMARY FUNCTION OF THESE SYSTEMS IS TO SUPPLY DRINKING WATER TO THE CONSUMERS AT A SPECIFIED SUPPLY PRESSURE.
- WHERE THERE IS A NEED FOR PRESSURE REDUCTION, THE EXCESS PRESSURE CAN BE USED TO DRIVE A HYDROELECTRIC SYSTEM.
- THERE ARE DIFFERENT POSSIBILITIES TO PRODUCE ELECTRICITY WITHIN DRINKING WATER SYSTEMS.
- ONE CONCEPT IS TO INSTALL A TURBINE AT THE ENTRANCE OF THE RESERVOIR OR THE STORAGE TANK AT THE WATER DISTRIBUTING STATION.
- ANOTHER OPTION IS TO INSTALL IT WITHIN THE SUPPLY NETWORKS. IN THAT CASE, NORMALLY A CERTAIN
   RESIDUAL PRESSURE AS REQUIRED FOR THE DISTRIBUTION NETWORK HAS TO BE MAINTAINED

# NON RIVER POTENTIAL

Drinking water 12%

(C)

Irrigation 34%


Thermal Plant 54%

#### Total of around 5 MW

| Micro-Hydro Stream                                   | Public Institution                                   | Number of Studied<br>Sites | Potential Capacity (MW) |
|------------------------------------------------------|------------------------------------------------------|----------------------------|-------------------------|
| Irrigation Channels and Conveyors                    | All Water Establishments, Ministry of<br>Agriculture | 4                          | 1.270                   |
| Waste Water Treatment Plants<br>Intakes and Outfalls | All Water Establishments, CDR                        | 1                          | 0.123                   |
| Electric Power Plants Outfall<br>Channels            | EDL Electric Power Plants                            | 5                          | 3.421                   |
| Municipal Water Distribution<br>Networks             | All Water Establishments, Municipalities             | 4                          | 0.144                   |
| Total Capacity                                       |                                                      |                            | 4.958                   |

# FINANCIAL ANALYSIS

- AVERAGE PRODUCTION COST AROUND 0.19 USD/KWH WHEREAS SELLING AVERAGE PRICE AROUND 0.094 USD/KWH
- IN THE STUDY, NO DETAILED
   ENGINEERING HAS BEEN CARRIED FOR
   THE VISITED SITES SO THAT ACTUAL
   COSTS CANNOT BE CALCULATED
- AVERAGE COST DISTRIBUTION OF MICRO-HYDRO SYSTEMS ADOPTED FROM
  INDONESIA EXPERIENCE



# FINANCIAL ANALYSIS: COST PER MW

- THE APPROXIMATED FIXED COSTS FOR THE PROPOSED SYSTEMS ARE ABOUT 4,000 USD/INSTALLED KW.
- DEPENDING ON THE DIFFICULTY AND COMPLEXITY OF THE SPECIFIC SITE A CORRECTION FACTOR (CF) WAS INTRODUCED TO ESTIMATE THE INDIVIDUAL SPECIFIC CONSTRUCTION COSTS FOR EACH SITE.
- THE CORRECTION FACTOR IS A ROUGH ESTIMATE OF A PERCENTAGE INCREASE OF THE SPECIFIC INVESTMENT COST.

| Site Name                              | Sym | Correction<br>factor (Cf) | USD<br>/ kW |
|----------------------------------------|-----|---------------------------|-------------|
| Naher el<br>Bared lake                 | A   | 10%                       | 4,400       |
| Ain Leghwaibe (b)                      | А   | 5%                        | 4,200       |
| Qasimia Irrigation<br>System           | А   | 10%                       | 4,400       |
| Falouss Irrigation<br>System           | А   | 10%                       | 4,400       |
| Zahrani Power<br>Plant                 | С   | 15%                       | 4,600       |
| Zouk Power Plant                       | С   | 35%                       | 5,400       |
| Jieh Power Plant                       | С   | 35%                       | 5,400       |
| Deir Ammar<br>(Beddawi) Power<br>Plant | С   | 10%                       | 4,400       |
| Hrayche Power<br>Plant                 | С   | 15%                       | 4,600       |
| Saida water<br>station (a)             | D   | 10%                       | 4,400       |
| Saida water<br>station (b)             | D   | 10%                       | 4,400       |
| Kaa el Rim                             | D   | 5%                        | 4,200       |
| Ain Leghwaibe (a)                      | D   | 10%                       | 4,400       |

# FINANCIAL ANALYSIS: STUDY PARAMETERS

| Hydropower plant in             | Plant capacity factor  |
|---------------------------------|------------------------|
| Irrigation system               | 25%                    |
| Thermal power plant             | 80%                    |
| Drinking water system           | 50%                    |
| Other inputs                    | Value                  |
| Discount rate (nominal)         | 7%                     |
| Inflation rate                  | 5%                     |
| Interest rate                   | 3%                     |
| Loan duration                   | 5 years                |
| Service life                    | 20 years               |
| Operation & maintenance<br>cost | 5 % of investment cost |

0

#### FINANCIAL ANALYSIS: SELLING TARIFF

- THE ANALYSES ARE MADE FOR TWO "ENERGY SALES OPTIONS" (TARIFF FOR ENERGY SALES TO THE GRID):
  - ELECTRICITY TARIFF \$¢9.4/KWH (= SUBSIDIZED SALES PRICE IN LEBANON)
  - ELECTRICITY TARIFF  $\frac{19}{KWH}$  (= REAL PRODUCTION PRICE IN LEBANON)
- FOR BOTH OPTIONS, A TARIFF INCREASE OF 5% PER YEAR IS ASSUMED WHICH APPROXIMATES THE GENERAL ANNUAL INFLATION RATE.

#### FINANCIAL ANALYSIS: IRR

| Site Code | Site Name                 | Sym | IRR (elec. tariff 0.094 \$/<br>kWh) | IRR (elec. tariff 0.19 \$/<br>kWh) |
|-----------|---------------------------|-----|-------------------------------------|------------------------------------|
| LEB001    | Naher el Bared lake       | Ā   | 0%                                  | 3%                                 |
| LEB004    | Ain Leghwaibe (b)         | Ā   | 0%                                  | 4%                                 |
| LEB007    | Qasimia Irrigation System | Ā   | 0%                                  | 3%                                 |
| LEB008    | Falouss Irrigation System | А   | 0%                                  | 3%                                 |
| LEB012    | Zahrani Power Plant       | С   | 13%                                 | 45%                                |
| LEB013    | Zouk Power Plant          | С   | 9%                                  | 35%                                |
| LEB014    | Jieh Power Plant          | С   | 9%                                  | 35%                                |
| LEB015    | Deir Ammar Power Plant    | С   | 15%                                 | 49%                                |
| LEB016    | Hrayche Power Plant       | С   | 13%                                 | 45%                                |
| LEB017    | Saida water station (a)   | D   | 3%                                  | 23%                                |
| LEB018    | Saida water station (b)   | D   | 3%                                  | 23%                                |
| LEB019    | Kaa el Rim                | D   | 4%                                  | 24%                                |
| LEB020    | Ain Leghwaibe (a)         | D   | 3%                                  | 23%                                |

0

# SOCIAL AND ENVIRONMENTAL ASPECTS

| Relevant aspects        | Irrigation system<br>(A) | Wastewater<br>treatment plant (B) | Thermal power<br>plant (C) | Drinking water<br>system (D) |
|-------------------------|--------------------------|-----------------------------------|----------------------------|------------------------------|
| Land issues             | Possible                 | no                                | no                         | Possible                     |
| Water right             | Possible                 | no                                | no                         | no                           |
| Water conflict          | Possible                 | no                                | no                         | Possible                     |
| Community involvement   | Possible                 | no                                | no                         | Possible                     |
| Catchment area          | Yes                      | no                                | no                         | yes                          |
| Fish and aquatic live   | Yes                      | no                                | no                         | no                           |
| Residual water in river | Yes                      | no                                | no                         | Possible                     |

# **GENERAL CONCLUSION**

- NON-RIVER BASED HYDROPOWER PLANTS HAVE POTENTIAL IN LEBANON, ALTHOUGH THE LACK OF SUFFICIENT DATA SUCH AS, FOR EXAMPLE, THE MAPPING OF WATER SUPPLY NETWORKS, DOES NOT ALLOW THE COMPLETE POTENTIAL TO BE EXACTLY MEASURED.
- DATA AVAILABILITY AND PROPER INFORMATION RECORDING (I.E., DIGITIZING INFORMATION) IS REQUIRED, PARTICULARLY FROM THE NATIONAL WATER AUTHORITIES.
- IN THE PRESENT STUDY, THE MOST INTERESTING SITES ARE RELATED TO THERMAL POWER PLANTS
- INVESTMENT IN HYDROPOWER SYSTEMS WHICH CAN BE INTEGRATED INTO THERMAL POWER PLANTS IN LEBANON WAS FOUND TO BE ECONOMICALLY ATTRACTIVE (MAINLY DUE TO HIGH OPERATIONAL HOURS WHICH TRANSLATE INTO A HIGH LOAD FACTOR AND HIGH AVOIDED COSTS).

# **GENERAL CONCLUSION**

- A WELL-DEFINED FEED-IN TARIFF FOR HYDROPOWER WHICH EXCEEDS THE SPECIFIC PRODUCTION COSTS (PER KWH) WOULD ALSO ENCOURAGE PRIVATE INVESTORS.
- A NEW ELECTRICITY TARIFF FOR HYDROPOWER ELECTRICITY WOULD ENCOURAGE THE INVESTMENT IN DRINKING WATER HYDROPOWER PLANTS.
- HYDROPOWER IN IRRIGATION SYSTEMS IN LEBANON CAN BE UTILIZED WHEN THE OPERATION PERIOD IS, AT LEAST, LONGER THAN 56-MONTHS. IF WATER IS FLOWING ALL YEAR ROUND VIA THE IRRIGATION CHANNEL (IN WET AND DRY SEASONS), HYDROPOWER EXPLOITATION WOULD BECOME EVEN MORE ATTRACTIVE.
- THE ANNUAL SAVING OF OIL, IN ALL CASES, CONTRIBUTES TO THE SAVING OF FOREIGN CURRENCY AND THUS IMPROVES THE TRADE BALANCE.
- AVOIDING GREENHOUSE GAS ACCUMULATION BY A CONSIDERABLE AMOUNT SHOULD ALLOW FOR THE APPLICATION OF A CDM OR EVEN A NEWER NEGOTIATED AGREEMENT.