

Water reuse in Morocco: challenges and opportunities

Karima BAKKALI, Research engineer in Water Treatment Sustainable Water Treatment & Reuse International Water Research Institute (IWRI) Mohammed VI Polytechnic University (UM6P), Morocco

October 28th, 2024

Who we are

MEETING EUTURE WATER CHALLENGES

IWRI @ UM6P SINCE 2019

- To rethink and adapt research and innovation to new sustainable paradigms to meet ongoing and future challenges related to water and climate in Morocco and Africa
- To deliver quality-oriented research-based learning programs, capacity building, and services
- To act as an African Water Hub through strategic cooperation and partnerships

Integrated Water Ressources Management

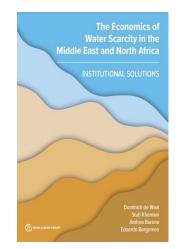
Water Resources Assessment: supply, use, distribution, Water Related Hazards, coastal zone management

Hydroinformatics

Physical and mathematical modeling & simulation Risk analysis & reliability assessment Hybrid modelling for water and climate issue

Advanced Water Technologies

Water Treatment & Reuse Desalination Engineering Innovative Water Saving Technologies

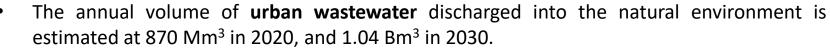

Climate Change & Adaptation

Hydroclimatology Adaptation strategies Climate Services

MENA is world's most stressed region!

- Water stress → annual water supplies drop below
 1,700 m³ (0.45 Mgal) per person.
- < 1,000 m³ (0.26 Mgal) per person, water scarcity
- < 500 m³ (0.13 Mgal) per person "absolute" water scarcity.

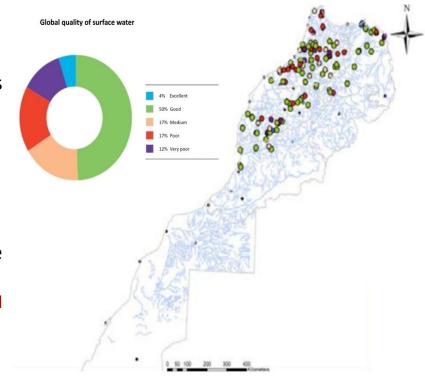
Apr 2023:


The new "absolute water scarce" countries in the region are Iraq, Syria,
Egypt, Iran, and Morocco
→ increasing the supply of nonconventional water is an emerging area of

R&D, policy debate and investment

© 2023 International Bank for Reconstruction and Development / The World Bank

CC BY 3.0 IGO


Water quality challenges/opportunities in Morocco

ightarrow huge potential for water reclamation for the Agri sector

- Industrial wastewater production in Morocco is approximately 970 Mm³ per year
 → great potential for water treatment and reuse in the industrial sector
- Agriculture (75-80% freshwater use) is also a source of pollution, mainly due to the extensive use of pesticides and fertilizers.

 \rightarrow urgent need to rationalize the use, develop nature-based solutions to reclaim water and protect the exposed ecosystem (soil and aquifers), and promote the safe reuse of treated WW.

(Moroccan Ministry of Water, 2016)

IWRI's R&D on wastewater treatment & **reuse** and seawater **desalination** is of strategic importance to Morocco to enable the **full valorization of unconventional water** resources to meet surging demand from urban, industrial and agricultural sectors, under a **changing climate**

4

National plan for wastewater reuse in Morocco (2018)

- 1st stage: investing in the WW treatment infrastructure (renovation and extension projects) → 95% collection of urban wastewaters nationwide by 2040
- **2nd stage**: increasing the volume of reused WW to **100** Mm³/year by 2025.
- **3rd stage**: By 2030, reclaiming **325** Mm³/year of treated WW
 - \rightarrow Mostly used to irrigate parks, golf courses, etc. and for selected industrial applications.
 - \rightarrow Very limited reuse in agriculture (35 Mm³/year ~ 10%)
 - \rightarrow No reuse for aquifers recharge

E.g. The reuse of treated WW to irrigate green spaces in Rabat has saved ~ 4 Mm³/year of freshwater [2022], equivalent to the drinking water supply for two small cities (25000 inhabitants, each)

https://www.environnement.gov.ma/

Fulfilling its own water needs using nonconventional water (31% in 2022, entirely by 2026 ~ 160 Mm³/y), including seawater desalination and wastewater reuse. The ambitious plan includes establishing 7 WWTPs, 3 desalination plants, and 4 solar power plants

How to "circulate" water throughout OCP's value chain?

A network of 7 WWTPs to dedicated to provide treated wastewater for reuse in the phosphate enrichment process, and other usages, as an alternative to the freshwater sources. → Benefits: reuse of 15 Mm³/Y of urban wastewater

The Group built the world's longest **phosphate-slurry pipeline** (187 km) for a more efficient mean to transport enriched phosphates to its downstream processing units at Jorf Lasfar **> Benefits:** massive annual savings of around 90% in logistical costs, 3 Mm³ of water, and 930K tons of CO₂ emissions

THANK YOU!