TECHNOLOGIES TO IMPROVE ENERGY EFFICIENCY

Water-Energy Nexus Operational Toolkit : Resource Efficiency

20/02/2017

This image cannot currently be displayed.

Outline

Introduction

Energy efficiency in water and wastewater treatment

Energy efficiency in water distribution systems

- Energy efficiency in desalination
- Key messages

Energy Consumption in the Arab Region

Energy intensity in the Arab countries

On a country-by-country level, the Arab region includes a range of very different economies, from low energy intensity to some of the world's highest intensity rates.

Energy efficiency in water and wastewater treatment

© Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Water and wastewater treatment

Energy management opportunities in the water and wastewater industries

Energy efficiency and demand response

- Data monitoring and process control
- High-efficiency pumps and motors

Emerging technologies and processes

- Membrane bioreactors
- Microbial fuel cells
- LED UV lamps

Energy recovery and generation

- Cogeneration using digester biogas
- Use of renewable energy to pump water

Source: Reekie, 2013

Water and wastewater treatment

Best practices in water and wastewater energy management

General

- Electric motors: correctly size motors
- Electric peak reduction
- Pumps: reduce pump head

Water

- Integrate system and power demands
- System leak detection and repair
- Optimize storage capacity

Wastewater

- Manage for seasonal peaks
- Dissolved oxygen control
- Sludge: replace centrifuge with gravity belt thickener

Water and wastewater treatment

Demand Response (DR)

- Water and wastewater treatment plants good candidates for the use of DR strategies.
- Example: 30% decrease in electricity demand using DR (WWTP in Southern California).

Wastewater treatment plants (WWTPs) Significance of energy in wastewater treatment

Wastewater treatment plants (WWTPs)

Percentage breakdown of typical wastewater system energy consumption

Page 11 © Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Wastewater treatment plants (WWTPs)

Electricity use for a variety of aeration types at a range of plant flow rates

Source: Reekie, 2013.

Wastewater treatment plants (WWTPs) Energy consumption variation by plant size and treatment type

Treatment plant size (m ³ /day)	Trickling filter (kWh/m³)	Activated sludge (kWh/m ³)	Advanced wastewater treatment (kWh/m ³)	Advanced wastewater treatment nitrification (kWh/m ³)
3,785	0.479	0.591	0.686	0.780
18,925	0.258	0.362	0.416	0.509
37,850	0.225	0.318	0.372	0.473
75,700	0.198	0.294	9 344	0.443
189,250	0.182	0.278	0.321	0.423
378,500	0.177	0.272	0.314	0.412

Page 13 © Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Source: Darwish et al., 2016.

Wastewater treatment plants (WWTPs)

Energy consumption variation by extent of plant capacity usage

Plant capacity	Plants operating at 80% influent capacity		Plants operating at 50% influent capacity	
Average daily flow (MGD)	Primary (source) energy (GJ/MG)	Secondary (site) electrical energy (kWh/MG)	Primary (source) energy (GJ/MG)	Secondary (site) electrical energy (kWh/MG)
1	19.6	1,629	27.2	2,263
5	15.2	1,264	22.8	1,898
10	13.3	1,107	20.9	1,741
20	11.4	950	19.0	1,584
50	8.9	742	16.5	1,377
100	7.0	585	14.7	1,220

Source: Deines, 2013.

Wastewater treatment plants (WWTPs) Energy consumption variation by effluent quality

	Effluent quality				Energy (1000
Treatment system	BOD	SS	Ρ	Ν	kWh/yr)
Rapid infiltration (facultative lagoon)	5	1	2	10	150
Slow rate, ridge + furrow (facultative lagoon)	1	1	0.1	3	181
Overland flow (facultative lagoon)	5	5	5	3	226
Extended aeration + sludge drying	20	20	-	-	683
Extended aeration + intermittent sand filter	15	15	-	-	708
Trickling filter + anaerobic digestion	30	30	-	-	783
Activated sludge + anaerobic digestion	20	20	-	-	889
Activated sludge + anaerobic digestion + filter	15	10	-	-	911
Activated sludge + nitrification + filter	15	10	-	-	1051
Activated sludge + sludge incineration	20	20	-	-	1440
Activated sludge + advanced wastewater treatment	<10	5	<1	<1	3809

Page 15 © Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Source: Crites et al., 2014.

Wastewater treatment plants (WWTPs)

Processing and disposal methods of solids

Processing or disposal function	Unit operation, unit process and treatment method	Impact on electricity use
Stabilization	Heat treatment Aerobic digestion Composting: In-vessel	Significant Moderate/significant Significant
Conditioning	Heat treatment	Significant
Dewatering	Vacuum filter Centrifuge Filter press	Significant Significant Moderate/significant
Heat drying	Multiple effect evaporator	Significant

Wastewater treatment plants (WWTPs) Anaerobic Digestion at WWTPs

Wastewater treatment plants (WWTPs)

Energy recovery potential using established technologies

		Net energy: "Gap" reduction possible (percentage)
	AD biogas with cogeneration engines	11-61
Biosolids	AD biogas after WAS pretreatment	~2-60
technology	AD biogas with co-digestion	2-128
	Incineration	2-69
	Gasification	~9-82
	Enhanced solids removal	10-71
Other technology	Anaerobic primary treatment	25-139
	Microbial fuel cells	8-110
	Biofuel from algae	~39-208
	Enhanced solids removal	10-71

Source: Deines, 2013.

Net energy: the energy to be extracted from the incoming wastewater for facility primary energy self-sufficiency (i.e., the "Gap" ≈1.9-7.2 MJ/m³).

Wastewater treatment plants (WWTPs)

Energy conservation measures

Energy conservation measure	Treatment stage	Energy savings range (%)
Wastewater pumping optimization	Throughout system	<0.7
Aeration system optimization	Secondary treatment	~15-38
Addition of pre-anoxic zone for BNR	Secondary treatment	~4-15
Flexible sequencing of aeration basins	Secondary treatment	~8-22
High-efficiency UV	Disinfection	~4
Lighting system improvements	Support facilities (buildings)	~2-6

Source: Deines, 2013.

Water treatment plants

Energy intensity of recycled water treatment and end uses of the recycled water

Technologies Used	Technologies Used Energy Use (kWh/MG					
Conven	Conventional Tertiary Treatment					
Flocculation, direct filtration, UV/advanced oxidation	1,500	Irrigation, industrial use				
Clarification, media filtration, 1,619		Irrigation, industrial and commercial use				
Anthracite coal bed filtration, UV	1,703	Irrigation, industrial use				
Rapid mix, flocculation, media 1,800 1,800		Irrigation				
Membrane Treatment						
MF, RO, UV/advanced oxidation	3,680	Groundwater recharge				
UF, RO, UV	4,050	Industrial use				
MF, RO	4,674	Industrial use				
MF, RO	8,300	High-quality industrial use				

Page 20 © Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Source: Water in the West, 2013.

Energy efficiency in water distribution systems

© Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Water distribution systems

Typical energy end-uses in a public surface water system

Source: Reekie, 2013.

Life cycle costs of inefficient vs. efficient pump systems (percentage)

Source: Reekie, 2013.

Water distribution systems **Energy efficiency in water distribution systems**

- Energy efficiency can be improved in water supply systems by:
 - Upgrading the design of pump stations
 - o Increasing tank capacity
 - Installing variable speed drives (VSDs) for the pumps.
 - Installing pressure-reducing valves along the pipes network.

Energy efficiency in desalination

Global installed desalination capacity

Source: DesalData.com, 2014.

Desalination

The desalination process

Desalination Energy use in seawater desalination

	Equivalent electrical energy required (kWh/m ³)
Multistage Flash (MSF)	25
MSF coproduction	14
MED-TVC coproduction	11
Reverse osmosis (Mediterranean)	3.5
Ideal reversible desalination	0.8 to 2
Water recycling – MBR*	0.5 to 1.5
Distributing water (150 km, no grade)	0.6

* Representative wastewater recycling by membrane bioreactor, low value nonpotable.

Source: Sommariva, Desalination and Advanced Wastewater Treatment Economics, Balaban Pub., 2010

Decreasing energy use

Desalination

Total energy required per volume of permeate as a function of the RO system recovery

Source: Ray & Jain, 2011.

Desalination

Improving RO system energy efficiencies

Page 31 © Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Desalination Powering desalination with Renewable Energy

- Desalination powered by renewable energy (RE) will continue to increase in importance in the Arab countries.
- RE-powered desalination already best alternative for stand-alone power-generating systems in remote regions.
- Solar, wind and geothermal energy can be used to power desalination.
- The energy efficiency of desalination processes does not tend to vary greatly according to the energy source used.
- Challenges of RE technology: high capital costs and intermittence.
- Renewable energy potential at a particular location must be considered as part of designing such desalination plants.

Desalination

RE-desalination: Maturity

Typical Capacity Range

Source: World Resources Institute, 2016.

Key messages

- The most energy-consuming parts of a process must be targeted.
 - For wastewater treatment this is aeration.
 - For water distribution systems this is pumping.
- More energy-efficient desalination technologies can play a pivotal role in improving the overall energy consumption of the region.
 - RO is currently the technology of choice but there is still room for improvement.
 - The use RE to power desalination is rapidly being adopted in the region.
- Intelligent systems have the potential to increase efficiencies.
 - They help match supply and demand.
 - They can have low capital costs.
- Energy efficiency measures which require the least effort can be very beneficial.

THANK YOU