Economic and Social Commission for Western Asia

Overview of Groundwater Status Globally and in the Mashreq, Institutional Governance, Challenges and Opportunities

Disruptive Technologies for Improved Groundwater Management in the Mashreq Region Beirut, 15-17 June 2021

Ziad Khayat Economic Affairs Officer Water Resources Section SDPD, ESCWA

Global Water Resources Overview

Distribution of Earth's Water

• Groundwater represents an important component of the world's total fresh water

Importance of Groundwater

- Groundwater is of vital importance to many countries; as **more than 2.5 billion people**, countless farmers and many industrial facilities depend on its supply.
- About **50% of drinking water**, **40% of irrigation water**, and **35% of water for industries** globally are provided by groundwater.
- The accelerated development of groundwater over the past few decades has resulted in significant social and economic benefits through the provision of water supplies:

 The future use of groundwater will also be of vital importance to achieving the "Sustainable Development Goals" of the 2030 Development Agenda

Global Challenges Managing the invisible

Groundwater = Invisible resource

- "Out of sight, out of mind"
 - → Difficult to manage what you don't see

Need for data and information on:

- The availability and quality of the resource
- Its dynamic status
- The different uses

Importance of Data and Information to produce *useful* Knowledge

Global Challenges Groundwater Quality

Impact of human activities

- → Need to control land use
- ← Consideration of the geological formation and conditions

Management of groundwater goes beyond water only

Source: FAO, 2016

Global Challenges Transboundary Groundwater

Water knows no border

Most of the Groundwater is in Transboundary Aquifers (TBA)

366 TBA + 226 TB GW bodies

→ additional challenge: the borders

Source: IGRAC, 2015

Transboundary groundwater resources in the Mashreq Region

- All Mashreq countries share one or more of 24 transboundary aquifers.
- 24 aquifers are shared at least between 1 Mashreq country and its neighboring countries, where 7 aquifers are shared between the Mashreq countries only
- The shared aquifers cover around 30% of the total Mashreq region surface.

Source: Adapted from IGRAC, 2020, compiled by UNESCWA

Global Groundwater Situation

• The regions experiencing the highest groundwater stress are North Africa, West and Central Asia

Source: IGRAC (2014).

IGRAC (International Groundwater Resources Assessment Centre). 2014. Information System. Global Overview application. Delft, Netherlands, IGRAC. http://ggmn.e-id.nl/ggmn/GlobalOverview.html (Accessed December 2014). © IGRAC 2014.

Water resources in the Mashreq Region

- Worldwide, the average water available per person is about 7000 m³/inhab/year; in the Mashreq region, it is only around 1250 m³/inhab/year.
- 3 out of 6 countries of the Mashreq region are below the renewable freshwater scarcity annual threshold of 1,000 m³ per capita, where Jordan is below the absolute water scarcity threshold of 500 m³.
- Groundwater is the major source of freshwater in half of the Mashreq countries

Source: FAO, 2017, ESCWA, 2019.

Water resources in the Mashreq Region

Municipal water withdrawal as % of total withdrawal (%)

Industrial water withdrawal as % of total water withdrawal (%)

Agricultural water withdrawal as % of total water withdrawal (%)

Source: FAO, 2017; Lebanon source: MoEW, 2010

Mashreq Countries	% of irrigation water from groundwater	% of groundwater used from all available water sources
Iran	>60	57
Iraq (Islamic Republic of)	6	2 to 9
Jordan	53	59
Lebanon	22	61
Syrian Arab Republic	60	-
Turkey	-	26

Source: FAO, 2017, Abd El Mooty et. al, 2016 and Molle and Closas 2016,.

Groundwater pressures in the Mashreq region

Groundwater pressures in the Mashreq region Climate Change

Example from Turkey

- 2020 was the driest of the past 5 years, precipitation was 48% lower than the average for 1981-2010
- The GRACE-FO map from January 11, 2021, depicts how the amount of groundwater compares to long-term average records (1948-2010). Most of the country has a groundwater wetness percentile of less than 5%.

https://earthobservatory.nasa.gov/images/147811/turkey-experiences-intense-drought

Groundwater pressures in the Mashreq region Groundwater Management

• Lack of good management and monitoring practices have led to an uncontrolled number of wells in most Mashreq countries

Private wells in Lebanon

Source: Molle et. al., 2017

Source: Al-Sudani, 2018

Source: UNDP, 2014

Consequences of groundwater over-abstraction

Water wells production and groundwater drawdown in Jordan (1995-2017)

Source: Torkamanitombeki et al., 2018

Groundwater storage change-GRACE mission

Amman, Jordan

Water Storage Anomaly values at 31.91,35.96

Beirut, Lebanon

Water Storage Anomaly values at 33.79,35.52

Baghdad, Iraq

https://tethys2.byu.edu/apps/newgrace/global-map/

Groundwater storage change-GRACE mission

2004

2006

Istanbul, Turkey

Zoom All

2008

2010

Date

Water Storage Anomaly values at 41,29.39

https://tethys2.byu.edu/apps/newgrace/global-map/

2013

Liquid Water Equivalent Thickness (cm)

2016

Apr 16, 2002 → Aug 21, 2016

Tehran, Iran

Consequences of groundwater over-abstraction Quality consequences

Piezometric levels in Azraq, Jordan (1985-2013) and increase in salinity in one sample well

Source: Zaarour, 2017

Groundwater Governance Global Framework

"Development of groundwater has been rapid, outpacing the development of the governance frameworks that should have regulated it, and significant problems of allocation, depletion and quality impairment are emerging" (FAO, 2016)

• With a few positive exceptions, the governance of groundwater has not kept pace with the unprecedented and rapid changes. As a result, part of the valuable groundwater resources may be lost, and groundwater-related ecosystems and environment may be damaged.

Groundwater Governance and Management

"Good groundwater governance is the basis for effective groundwater management" (FAO, 2015)

• Groundwater governance framework defines the management of groundwater resources and the use of aquifers.

Accurate and widely-shared knowledge a	and science		Institutional framework
	Groundwater Governance components		
Conducive legal framework		Policies, incentive s	tructures and plans aligned with society's goals

Groundwater management is what actors do within the framework of governance; Activities related to the development and
protection of groundwater to implement the established policies and plans. The hydrogeological conditions and the
distribution of human activities will determine the place required for these management activities.

Groundwater Governance Data collection, information generation and knowledge sharing

Groundwater Governance Problems

- Inadequate or lack of clear policies and legislation regarding groundwater
- Lack or insufficiency of **political will** to implement policies and legislation related to groundwater
- Weak groundwater institutions, fragmented or overlapping responsibilities, and weak coordination between the sectors involved
- Generally limited funding affecting management, monitoring and capacity development
- Insufficient understanding of groundwater systems and insufficient awareness
- Lack of scientific and technical knowledge about specific transboundary aquifers
- Weak monitoring systems and lack of necessary information, data and/or technology
- Limited community participation

Source: FAO, 2016.

2022: Groundwater Year

- ESCWA Water Development Report 9th edition will be focusing on groundwater in the Arab region
- UN-Water has set the theme for the World Water Day in 2022 as "Groundwater: making the invisible visible"
- This will also be the theme for the World Water
 Development Report
- A groundwater summit will be held 7-8 December 2022 in Paris, France

Thank You