TECHNOLOGIES TO IMPROVE WATER EFFICIENCY

Water-Energy Nexus Operational Toolkit : Resource Efficiency

20/02/2017

Economic and Social Commission for Western Asia

Prof. Hassan Arafat ESCWA Consultant

UNITED NATIONS

ESCWA

Outline

- Introduction
- Water efficiency in electricity production
- Water efficiency in oil and gas industry
- Water efficiency in industrial, commercial & institutional sectors
- Water efficiency in water production and distribution systems
- Key messages

Introduction

Water stress in the Arab countries

WATER STRESS BY COUNTRY

ratio of withdrawals to supply

Low stress (< 10%)

Low to medium stress (10-20%)

Medium to high stress (20-40%)

High stress (40-80%)

Extremely high stress (> 80%)

This map shows the average exposure of water users in each country to water stress, the ratio of total withdrawals to total renewable supply in a given area. A higher percentage means more water users are competing for limited supplies. Source: WRI Aqueduct, Gassert et al. 2013

AQUEDUCT

Page 3

Total renewable water resources

Unmet water demand in Arab countries

Water reuse in the Arab countries

Source: The World Bank, 2011.

Countries	Percentage of wastewater treated	Percentage of treated wastewater reused	Reused water as a percentage of total water withdrawn
Algeria	85.37	7.29	0.84
Bahrain	100.00	36.30	4.56
Egypt	79.79	23.33	1.02
Iraq	17.04	5.61	0.01
Jordan	94.87	91.89	10.84
Kuwait	95.60	32.64	8.54
Lebanon	1.29	50.00	0.15
Libya	7.33	100.00	0.92
Morocco	25.29	45.20	0.63
Oman	37.76	6.22	0.17
Qatar	14.86	65.15	7.82
Saudi Arabia	89.32	25.46	0.70
Syria	40.15	100.00	3.29
Tunisia	52.06	28.33	2.39
UAE	90.80	54.63	6.20
West Bank & Gaza	60.00	18.13	1.30
Yemen	62.16	13.04	0.18

© Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Water efficiency in electricity production Embedded water in energy

Source: Water in the West, 2013.

Transportation Fuels, Natural Gas

Types of cooling processes

Water use in cooling processes

	Once-through		Recirculating		Dry-cooling	
	W	С	W	С	W	С
Coal (conventional)	<u>20,000-</u> 50,000	100-317	500-1,200	<u>480</u> -1,100	N/A	N/A
Natural gas (combined cycle)	7,500-20,000	20- <u>100</u>	150-283	130- <u>300</u>	0-4	0-4
Nuclear	25,000-60,000	100-400	800-2,600	600-800	N/A	N/A

Sources: Created based on data from Macknick et al., 2012; Union of Concerned Scientists, n.d.

Unit: Gallons of water required per megawatt-hour of electricity produced W: Withdrawal; C: Consumption.

Water consumption factors of conventional power plants

Water efficiency in oil and gas industry

© Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Oil and gas industry Embedded water in oil and gas processes

Oil and gas industry Water coefficients in primary energy production

Oil and gas industry

Enhanced Oil Recovery (EOR)

Injection water required (gallons of water/gallons of crude oil) for various oil recovery technologies.

Source: Xylem, 2014.

Oil and gas industry

Fracking

Oil and gas industry

Water reuse in the oil and gas industry

Water efficiency in the oil and gas industry can be improved by using pipelines, onsite treatment, and reusing wastewater and produced water.

- Reusing produced water facilitates automated water resources management.
- Reusing produced water provides a stable water supply and more resilient operations.
- Produced water reuse is becoming more prevalent as policies on water use and discharge are become more stringent.

Multi-Well Pad Savings

Rig moves Location Drill pipe handling Frac costs Daily rentals

Water efficiency in industrial, commercial & institutional sectors

© Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Example: The minimum estimate of potential savings from increased water efficiency in the industrial, commercial and institutional sectors of California would be sufficient to fulfil the annual water requirements of the whole city of Los Angeles (both residential and non-residential applications).

Industrial, commercial & institutional sectors **Potential savings from water efficient technologies**

Water reuse

Source: Abengoa Water, 2012.

- Reuse in agriculture
- **Resume in industry**
- C Urban reuse

- D Aquifer recharge
- E Indirect potable reuse of an aquifer
- F Indirect potable reuse of a river
- G Regeneration and reuse of industrial water

Recycling water – Considerations

End use

- Groundwater recharge
- Agricultural reuse
- Industrial reuse

Application description

- Non-Potable
 Reuse
- Food/Non-food crops
- Once-Through Cooling

Treatment required

- Primary
- Secondary
- Filtration
- Disinfection
- Soil Aquifer Treatment

Source: Water in the West, 2013. Industrial, commercial & institutional sectors

Greywater recycling systems

Schematic diagram of a greywater recycling system; Source: Tanked Australia, 2007.

Industrial, commercial & institutional sectors

Faucets and Toilets

The Aqus(TM) WaterSaver technology which uses sink greywater for toilets; *Source*: Lepisto, 2006.

Water efficiency in water production and distribution systems

Water efficient greenhouses

Aquaponics

× This image cannot currently be displayed.

- Type of hydroponics.
- Uses 90% less water than traditional farming.

Water is directed into the water pulley system to rotate the racks in the tower three times a day. This ensures that every rack of plants receives sufficient sunlight. Rainwater and recycled water are collected in an overhead tank.

The patented water pulley system makes use of flowing water and gravity to rotate the racks. A generator powers a pump, which redirects water into the tank.

As racks rotate, the plants are watered by micro-sprinklers three times a day. The water is then recycled to power the generator.

Irrigation systems

Efficiency of application for various irrigation methods; Source: Heatley and Ritchie, 2006.

Typical water losses from a pressurized irrigation system; Source: Heatley and Ritchie, 2006.

Loss c	Range	Typical	
Leaking pipes	0-10%	0-1%	
Evaporation in the air		0-10%	<3%
Wind-drift out of target area		0-20%	<5%
nterception and evaporation	0-10%	<u> </u>	
Surface run-off		0-10%	<2%
Uneven/excessive application	5-80%	5-30%	

Intelligent metering systems

Hierarchy for water efficiency strategies; Source: Boyle et al., 2013.

Intelligent water metering systems

Page 36 © Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Key messages

- There is no ideal efficiency solution for all ESCWA member countries.
 - Strategies must be assessed with reference to the respective situation.
- Recycling of wastewater is a strategy that can be implemented by various sectors.
 - As environmental standards for discharged waters become more stringent, recycling water becomes more feasible.
- Water consumption can be reduced in electricity generation processes by addressing various parameters. Examples:
 - Cooling types
 - Combined cycle arrangements
- Several technological options for more water efficient water distribution (e.g., IM systems), particularly in the agricultural sector, are becoming more popular.

THANK YOU

Economic and Social Commission for Western Asia

UNITED NATIONS

