

Training workshop on Sand and Dust storms in the Arab region 10-12 Feb 2018, Cairo

ground observation of airborne dust

Sergio Rodríguez srodriguezg@aemet.es AEMET, Spain

Dust and climate

- -light scattering and absorption
- -droplets and ice clouds formation
- -clouds optical properties
- -fertilization (P and Fe) of the ocean implications on CO₂ budget

dust and health

dust dust, aerosols and pollutants in-situ observations:

> PM₁₀ and PM_{2.5} levels PM₁₀ and PM_{2.5} composition complementary measurements

remote sensing observations:

column properties altitude resolved properties

let's build our observation network !!!

dust

dust, aerosols and pollutants in-situ observations:

PM₁₀ and PM_{2.5} levels PM₁₀ and PM_{2.5} composition complementary measurements

remote sensing observations:

column properties altitude resolved properties

let's build our observation network !!!

parameters indicative of:

dust ambient air quality

types of dust sources:

desert dust

desert dust

chotts, sabkhas, wadis, salares

- 1. what is dust?
 - There are several types of sources, but the mayor dust sources are associate with <u>dry lakes/rivers beds</u>
- 2. chemistry and mineralogy clays, feldspars, oxides, evaporites Si, Al, Ca, Fe, Mg, Na, Cl, Mn....

Density and Real Index of Refraction of Minerals Found in Saharan Dust^a

1.	c	ay	<u>/S</u>

illite $K_{0.6}(H_3O)_{0.4}Al_{1.3}Mg_{0.3}Fe_{0.1}Si_{3.5}O_{10}(OH)_2$ $\cdot (H_2O)$ kaolinite $Al_2Si_2O_5(OH)_4$ montmorillonite $(Na,Ca)_{0.5}(Al,Mg,Fe)_4(Si,Al)_8O_{20}(OH)_4$ $\cdot n(H_2O)$ smectite $(Na,Ca)Al_4(Si,Al)_8O_{20}(OH)_4\cdot 2(H_2O)$ chlorite $Na_{0.5}(Al,Mg)_6(Si,Al)_8O_{18}(OH)_{12}$ $\cdot 5(H_2O)$

2. evaporites

calcite CaCO₃ dolomite $CaMg(CO_3)_2$ $CaSO_4 \cdot 2(H_2O)$ gypsum CaSO₄ anhydrite halite NaCl

4. oxides

hematite Fe_2O_3 goethite FeO(OH) rutile TiO_2

3. feldspars

microcline KAlSi₃O₈ Var oligoclase $(Na,Ca)(Si,Al)_4O_8$ Var albite NaAlSi₃O₈ Characterization of African dust transported to Puerto Rico by Var anorthite CaAl₂Si₂O₈ individual particle and size segregated bulk analysis

Elizabeth A. Reid, 1,2,3 Jeffrey S. Reid, Michael M. Meier, Michael R. Dunlap, 4

Steven S. Cliff, Aaron Broumas, Kevin Perry, and Hal Maring

desert dust

chotts, sabkhas, wadis, salares

- 1. what is dust?
 - There are several types of sources, but the mayor dust sources are associate with <u>dry lakes/rivers beds</u>
- 2. chemistry and mineralogy clays, feldspars, oxides, evaporites
- 3. Size and morphology
 - 1 and 20 µm aggregates

1 µm

3 µm

12 µm

desert dust

chotts, sabkhas, wadis, salares

- 1. what is dust?
 There are several types of sources, but the mayor dust sources are associate with dry lakes/rivers beds
- 2. chemistry and mineralogy clays, feldspars, oxides, evaporites
- 3. Size and morphology 1 and 20 µm aggregates

Sahara

Detección satélite

chots, sabkas: lechos salados de lagos ecos

Wakis: barrancos con inundaciones estacionales

of Days AI > 0.7 or 1

0 7 14 21 28

chotts, sabkhas, wadis, salares

- 1. what is dust?
 - There are several types of sources, but the mayor dust sources are associate with dry lakes/rivers beds

sediments, fluvial & alluvial deposits

- 2. chemistry and mineralogy clays, feldspars, oxides, evaporites
- 3. Size and morphology 1 and 20 µm agglomerates

strong link between water and dust natural sources

types of dust sources:

desert dust paraglacial dust

paraglacial dust

paraglacial regions:

- > 50°N
- > 40°S

<u>Paraglacial</u> means unstable conditions caused by a significant relaxation time in processes and geomorphic patterns following <u>glacial climates</u>.

When a large mass of ice melts:

- newly exposed landscape free of vegetation
- water stream discharge, increasing erosion
- sediment deposition

Hubbard Glacier, Alaska

MODIS Aqua Gulf of Alaska 4-Dec-2015

paraglacial dust

paraglacial regions:

- > 50°N
- > 40°S
- 5% of global dust budget

Reviews of Geophysics

High-latitude dust in the Earth system

Joanna E. Bullard¹, Matthew Baddock¹, Tom Bradwell², John Crusius³, Eleanor Darlington¹, Diego Gaiero⁴, Santiago Gassó⁵, Gudrun Gisladottir⁶, Richard Hodgkins¹, Robert McCulloch², Cheryl McKenna-Neuman⁷, Tom Mockford¹, Helena Stewart², and Throstur Thorsteinsson⁸

-production of fine material

-meltwater transport of fines

-deposition of locally-sourced dust

 strong katabatic winds, weaker up-ice winds

sediments

- deflation and aeolian reworking of fine sediments

- multiple phases of local dust entrainment and deposition

- katabatic winds

- meltwater reworking of - local wind scour and redistribution of fine material

> local-regional scale deposition of dust to form loess

> - deposition of dust and nutrients to soils and lakes

- katabatic and regional winds

 deposition of dust and nutrients

regional winds

Bullard et al., 2016

18°50'W 18°30'W

Landsat, 17 Sep 2013, Mýrdalssandur -Iceland

Dangerous air pollution hit Iceland's capital

Posted by Chillymanjaro on February 21, 2014 in categories Follow @TheWatchers_ Dust and haze, Pollution

types of dust sources:

desert dust paraglaciar dust

they exists by natural causes

by man influence:

new climate-change-related

glacier, climate change

Glacier change and glacial lake outburst flood risk in the Bolivian Andes

Simon J. Cook^{1,2}, Ioannis Kougkoulos^{1,2}, Laura A. Edwards^{2,3}, Jason Dortch^{2,3}, and Dirk Hoffmann⁴ The Cryosphere, 10, 2399–2413, 2016

Bolivia: surface covered by glacier decreased 43% (1986-2014)

Proglacial lakes future dust sources

types of dust sources:

desert dust glacier dust

they exists by natural causes

by man influence:
new climate-change-related
new lakes desiccation

GOBIERNO DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO Agencia Estatal de Meteorología

Bolivia's Lake Poopó Disappears

April 2013

Jan 2016

2015-2016 drought ENSO enhanced

During the 1960s, the Syr y Amu rivers were re- chanelled for crop cultivation and the Aral Sea diminished increasing dust soruces Caspian Kazakhstan Aral Sea Sea Uzbekistan Turkmenistan

Aral Sea

1989 2003 2014

July - September, 1989

August 12, 2003

Aral Sea

Urmia lake

an emerging important dust source

types of dust sources:

desert dust glacier dust

they exists by natural causes

by man influence:

new climate-change-related new lakes desiccation agriculture dust

Major Dust Activity Frequency

Aerosol Index > 1

Figure 11. Distribution of the percentage number of days per season (March, April, and May) M-DB2 DOD > 0.2 over North America with color code as in Figure 6. The white circled sources are numbered as follows: 1, Sonoran Desert; 2, Mojave Desert; 3,San Joaquin Valley; 3, Black Rock-Smoke Creek deserts; 4, Goose Lake; 6, Snake River; 7, Great Salt Lake Desert; 8, Colorado River; 9, Chihuahuan Desert; 10, Rio Grande; 11, High Plains; 12, Big Sioux River; and 13, lower Yellowstone Valley.

(TOMS) ABSORBING AEROSOL PRODUCT

Crops & Soils Magazine - Article

https://dl.sciencesocieties.org/publications/cns/articles/48/1/12

All that was left after the dust settled

Dust Bowl: 1930s

affected 400,000 km² along Texas and Oklahoma and adjacent regions of New Mexico, Colorado and Kansas.

dust -"black blizzards" or "black rollers" traveled cross country, reaching the East Coast, including New York City and Washington, D.C.

health-hazards-of-the-dust-bowl/

types of dust sources:

desert dust glacier dust

they exists by natural causes

by man influence:

new climate-change-related new lakes desiccation agriculture dust

Regional to synoptic scale

industrial dust

Local to regional scale

mines

fertilizers plants phosphate rocks

cement factories

ceramic manufactures

types of dust sources:

desert dust glacier dust

new climate-change-related new lakes desiccation agriculture dust

industrial dust construction dust

guidelines for preventing dust emissions

1. Introduction

- How to use this guidance
- 2. Air Quality Impact Evaluation
 - 2.1. Site evaluation
 - 2.2. Site impact
 - 2.3. Site evaluation guidelines
 - 2.4. Mitigation measures for low risk sites
 - 2.5. Mitigation measures for medium risk sites
 - Mitigation measures for high risk sites
- 3. Method Statement
 - For all sites
 - 3.2. Site waste management plans
 - 3.3. Additional information for high risk sites
 - Specific site issues (asbestos contaminated land)

4. Dust and Emission Control Measures

- 4.1. Pre site preparation
- 4.2. Haulage routes
- Site entrances and exits
- 4.4. Mobile crushing plant
- 1.5. Concrete batching
- Excavation and earthworks
- 4.7. Stockpiles and storage mounds
- 1.8. Cutting, grinding and sawing
- 4.9. Chutes and skips
- 4.10. Scabbling
- 4.11. Waste disposal
- 4.12. Dealing with spillages
- 4.13. Demolition activities
- 4.14. Hazardous and contaminated materials
- 4.15. Specific site activities

5. Site Monitoring

- 5.1. Site monitoring protocols
- 5.2. Site action levels

Introduction

What are the benefits of effective dust control?

How does the community view dust from construction sites?

How does the industry view dust from construction sites?

Why is dust a problem?

Constraints on dust control

Dust control measures

PRE-CONSTRUCTION MEASURES

SITE MEASURES

STORAGE PILES/GENERAL MATERIAL STORAGE

HAULED MATERIALS

PAVED ROAD TRACKOUT

types of dust sources:

desert dust glacier dust

new climate-change-related new lakes desiccation agriculture dust

industrial dust construction dust road dust

material accumulated on road and suspended vehicles:

- -construction/demolition dust
- -industrial dust
- -settled desert dust
- -settled air pollutants
- -pavement
- -brakes: barite (BaSO4), hematite (Fe2O3), tenorite (CuO), zircon (ZrSiO4), calcite (CaCO3), periclasa (MgO), vermiculite, and sulphide species such as stibnite (Sb2S3), pyrite (FeS2),
- chalcopyrite (CuFeS2), covellite (CuS), sphalerite (ZnS), hauerite (MnS2), and molybdenite (MoS2).

-tyres: rubber and metals (steel, Zn,...)

http://www.ehu.eus/sem/macla_pdf/macla16/Macla16_154.pdf

types of dust sources:

desert dust glacier dust

they exists by natural causes

by man influence:

new climate-change-related new lakes desiccation agriculture dust

industrial dust construction dust road dust Regional to synoptic scale

Local to regional scale

desert dust

people live in cities and breath a cocktail different of dust + pollutants

dust = desert + agriculture + construction + industrial + road-dust + ...

dust, aerosols and pollutants

in-situ observations

PM₁₀ and PM_{2.5} levels PM₁₀ and PM_{2.5} composition complementary observations

remote sensing observations let's build our observation network !!!

aerosols, a cocktail of chemicals:

dust
sulphate
nitrate
organic mater
black carbon (soot)
metals (Ni, As, Cd, V, Co...)
sea salt

size: 1 nm (10^{-9} m) to 20 μ m (10^{-6} m)

human hair: 70 µm

<u>aerosol</u>

 $SO_2 \longrightarrow SO_3 \longrightarrow H_2SO_4 \longrightarrow SO_4^=$

 $NO / NO_2 \longrightarrow HNO_3 \longrightarrow NO_3^-$

aerosols, a cocktail of chemicals:

dust
sulphate
nitrate
organic mater
black carbon (soot)

black carbon (soot)
metals (Ni, As, Cd, V, Co...)
sea salt

SO₂: oil refineries, coal power plants, ships, industry

gas precursor

<u>sulfato</u>

0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7

coal power plants

OMI SO₂ DU

-0.3 0.0 0.3 0.6 DU

Vol. 15, No. 4

JOURNAL OF CLIMATE

15 February 2002

Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model

Toshihiko Takemura* and Teruyuki Nakajima Oleg Dubovik, Brent N. Holben, and Stefan Kinni

GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L21811, doi:10.1029/2011GL049402, 2011

Estimation of SO₂ emissions using OMI retrievals

V. E. Fioletov, C. A. McLinden, N. Krotkov, M. D. Moran, and K. Yang

<u>sulfato</u>

Oil refinery

aerosols, a cocktail of chemicals:

dust
sulphate
nitrate
organic mater
black carbon (soot)
metals (Ni, As, Cd, V, Co...)
sea salt

gas precursor $SO_2 \longrightarrow SO_3 \longrightarrow H_2SO_4 \longrightarrow SO_4^{=}$ $NO / NO_2 \longrightarrow HNO_3 \longrightarrow NO_3^{-}$ $NH_3 \longrightarrow NH_4^{+}$

NO_x: vehicle exhaust, power plants, industry

NH₄NO₃

aerosols, a cocktail of chemicals:

```
dust
sulphate
nitrate
organic mater
black carbon (soot)
metals (Ni, As, Cd, V, Co...)
sea salt
```

Black carbon: vehicle exhaust (diesel), combustion sources

black carbon

10.5 Tg/y diesel, 4x4, camiones

0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1 2 3 5 7 10 (µg m⁻²)

India

Atmos. Chem. Phys., 13, 837–850, 2013 www.atmos-chem-phys.net/13/837/2013/ doi:10.5194/acp-13-837-2013 © Author(s) 2013. CC Attribution 3.0 License.

Vol. 15. No. 4

JOURNAL OF CLIMATE

4.0 3.0 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.0

15 FEBRUARY 200

Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model

aerosols, a cocktail of chemicals:

dust
sulphate
nitrate
organic mater
black carbon (soot)
metals (Ni, As, Cd, V, Co...)
sea salt

organic matter: combustion sources, vehicle exhaust

people live in cities and breath a cocktail dust + pollutants

In air quality, aerosols:

PM₁₀: mass concentration (μg/m³) of all aerosols smaller than 10 μm inhalable particles

PM_{2.5}: mass concentration (μg/m³) of all aerosols smaller than 2.5 μm alveolar particles

people live in cities and breath a cocktail dust + pollutants

 PM_{10} : Σ dust + sea salt + (sulphate + nitrate + organic matter + black carbon +metals)

 $PM_{2.5}$: Σ dust + sea salt + (sulphate + nitrate + organic matter + black carbon +metals)

 PM_{10} : Σ dust + sea salt + vehicle exhaust + oil refining + power plants + ships +...

 $PM_{2.5}$: Σ dust + sea salt + vehicle exhaust + oil refining + power plants + ships +...

 $PM_{2.5}$

PM_{2.5-10}

Marine salt:

Sulfate:

Nitrate:

Organic aerosol:

black carbon:

dust, aerosols and pollutants

in-situ observations

dust, aerosols and pollutants

in-situ observations

PM₁₀ and PM_{2.5} levels PM₁₀ and PM_{2.5} composition complementary observations

observation network

-method-01: reference - manual gravimetry

It is recommended to use standardised protocols

national standard method or already existing international standard methods

- -PM₁₀ and PM_{2.5} sampler
- -sampling procedure
- -weighing procedure

example:

EN 12341:2014

Ambient air. Standard gravimetric measurement method for the determination of the PM_{10} or $PM_{2,5}$ mass concentration of suspended particulate matter

Room for weighting the filters: RH =50% (30 %) and 20°C

PM₁₀ Blank filter PM₁₀ sample urban air

sample in dust days

-we recommend you use a specific normalised method (e.g. EN12341:2014)

Filters: Quartz, Teflon, Cellulose

Low Volume Sampler

High Volume Sampler

LVS:2.3 m³/h

HVS: 68 m³/h

HVS: 30 m³/h

-we recommend you use a specific normalised method (e.g. EN12341:2014). Ask to the distributor if the sampler sis designed to any standards

Inlets, airflows....

$PM_{10}, PM_{2.5}$

Filter

$$D_{50} = \sqrt{\frac{9\pi Stk \,\mu W^3}{4\rho_p CQ}}$$

 D_{50} = particle cut-point diameter centimeter

Stk = Stokes number = 0.23

 ρ_p = particle density (g/cm³)

Q = volumetric flow rate (cm³/s)

c = Cunningham slip correction

= 1 + 2.492 λ/D_{50} + 0.84 λ/D_{50} exp(-0.435 D_{50}/λ)

e gas mean free path

 $\mu = \text{gas viscosity (dyne} \cdot \text{s/cm}^2)$

W = nozzle diameter (cm)

The Stokes number is a dimensionless parameter that characterizes impaction.

1. PM₁₀ and PM_{2.5} levels

-method-01: reference - manual gravimetry

Manual gravimetry

advantage: reference method

disadvantage: poor time resolution, 24-h average

manual work

takes 3 days to know PM₁₀ concentration

-method-02: automatic

- 1. Impactor $PM_{10} / PM_{2.5}$
- 2. RH reductor / heater

3. Sensor

Beta radiation attenuation

4. Pump / Flow meter

Continuous measurements of PM (PM_{10} , $PM_{2.5}$, PM_1 or TSP)

PM with Beta atenuation

Krypton-85 or Carbon-14 is used as source of beta radiation (emitted by electrons during the nuclear decay of radioactive elements).

Ambient air is drawn through the sample system

Dust is deposited on a filter continuously. The layer of dust is building up and this increasing dust mass weakens the intensity of the beta beam.

Beta rays detector Beta rays source (Kr-85)

Pump and flowmeter

PM with Beta atenuation

Krypton-85 or Carbon-14 is used as source of beta radiation (emitted by electrons during the nuclear decay of radioactive elements).

Ambient air is drawn through the sample system

Dust is deposited on a continuously. The layer of is building up and this incre dust mass weakens the inte of the beta beam.

Beta Attenuation: \$\beta \text{Attenuation in Metter}\$

$$I = I_{\rm o}e^{-\mu_{\beta}\cdot x}$$

 μ_{β} is the mass absorption coefficient for beta radiation x mass thickness of the sample

x = f(atomic number to atomic mass ratio (Z/A))
Z/A (C, Si, Al, Ca, Fe, Mg, K, Cl, Na, N, O and S) 0.47-0.50
Standard foil calibration

typical elements of aerosols; fixed Z/A ratio: error of about 10%

Pump and flowmeter

PM with Beta atenuation (2)

$$m = F_{cal} ln \left(\frac{I_0}{I}\right)$$

- •m: increasing particle mass [µg]
- •F_{cal}: calibration factor
- $\bullet I_0$ beta ray intensity at empty filter
- •I beta ray intensity at loaded filter

The intensities I_0 and I are measured with the detector system. F_{cal} has to be measured directly during the calibration procedure. This is accomphished by replacing the filter with the element having a known mass (mass calibration kit)

The mass concentration is calculated from:

$$PM_{10} \& PM_{2.5} \approx c = \frac{m}{Ft}$$

Where:

c: concentration [µg/m³]

F: measured air flow [m³/h]

t: time [h]

-method-02: automatic

- 1. Impactor $PM_{10} / PM_{2.5}$
- 2. RH reductor / heater

3. Sensor

Beta radiation attenuation **TEOM**

4. Pump / Flow meter

Continuous measurements of PM (PM_{10} , $PM_{2.5}$, PM_1 or TSP)

Mass concentration

Automatic continuous measurements

TEOM: Tappered Element Oscillating Microbalance

1. TEOM mod.1400a

mass=function (frequency)

sensor

Sampling flow rate (16.67 l/m)

Sample accumalated in the filter

Micro-oscilation of constante amplitue GENERATOR

Frequency sensor

An increase in the amount of sample (dust) accumulated in the filter → decrease in the oscillation frequency

Mass concentration

Automatic continuous measurements

TEOM: Tappered Element Oscillating Microbalance

1. TEOM mod.1400a

sensor

mass=function (frequency)

more dust → lower oscillation frequency

In a spring-mass system the frequency follows the equation:

$$f = (K / M)^{0.5}$$

where:

frequency (radians/sec)

spring rate

mass

K and M are in consistent units. The relationship between mass and change in frequency can be expressed as:

$$dm = K_0 - \frac{1}{f_1^2} - \frac{1}{f_0^2}$$
 (2)

where:

change in mass

 K_0 = spring constant (including mass conversions)

= initial frequency (Hz) final frequency (Hz)

-method-02: automatic

- 1. Impactor $PM_{10} / PM_{2.5}$
- 2. RH reductor / heater

3. Sensor

Beta radiation attenuation TEOM
Optical Particle Sizers

4. Pump / Flow meter

Continuous measurements of PM (PM₁₀, PM_{2.5}, PM₁ or TSP)

-method-02: automatic

The most extended method and the most robust for dusty regions

beta

Manual change of the filter

Optical Particle Counters

cleaning of optics laser maintenance

Validation of the automatic measurements Intercomparisons for calibrations

Data evaluation:

automatic data are valid if they fit A or B:

A)
$$Y=a \cdot X$$
; $r^2 \ge 0.8$

B)
$$Y=a\cdot X + b$$
; $r^2 \ge 0.8$; $abs(b)<5$

Y= gravimetric method,

X= Automatic analyzer

$$PM_{10} (grav) = 0.71*PM_{10} (automatic)$$

 $PM_{2.5} (grav) = 0.65*PM_{2.5} (automatic)$

dust air quality

1. PM₁₀ and PM_{2.5} levels

-method-01: reference - manual gravimetry

-method-02: automatic

We recommend to convert PM₁₀ and PM_{2.5} data obtained with automatic instruments to gravimetric equivalent data.
 For this a standard obtained with intercomparisons is necessary

Standarization of PM_{10} y $PM_{2.5}$ in a regional network

In-situ dust characterization

The WHO recommend PM₁₀ (24-h) do not exceed 50 µg/m³

Viana et al., Atmospheric Environment, 2002

Standarization of PM_{10} y $PM_{2.5}$ in a regional network

+samplers of PM₁₀ and PM_{2.5}

room of conditioning and weighting filters

- 1 month in summer (30 days) sampling
- 1 month in winter (30 days) sampling at each station

QUALITY CONTROL

SAMPLER

airflow accuracy calibration of the sensor leaks cleaning

ARAFO

UNIDAD MOVIL

GLADIOLOS

TOME CANO

Tabla 1. Recopilación de ecuaciones obtenidas en intercomparaciones de analizadores de PM10.

Estación	Fecha	Periodo	T, °C	P hPa	Y=a·x	R²	¿VALIDA?	Y=a⋅x+b	R ²	¿VALIDA?	N
LA HIDALGA	21/02/2009 – 24/03/2009	INVIERNO	20.2	972	y=0.798x	0.995	SI	y=0.820x + (-1.530)	0.997	SI	28
LOS GLADIOLOS	27/04/2009 – 09/06/2009	PRIMAVERA	24.4	993	y=0.711x	0.982	SI	y=0.760x +(-1.425)	0.987	SI	34
TOME CANO	04/08/2009- 17/09/2009	VERANO	28.7	995	y=0.952x	0.850	SI	y=0.896x +(0.989)	0.878	SI	44
MERCADO CENTRAL	17/11/2009- 23/01/2010	INVIERNO	25.1	1015	y=1.275x	0.961	SI	y=1.191x +(2.928)	0.969	SI	49
MERCADO CENTRAL	09/01/2001- 28/12/2001	ANUAL	24.8		y=1.285x	0.872	SI	y=1.142x +(7.151)	0.893	SI	88
PARQUE REHOYAS	05/03/2010- 21/04/2010	INVIERNO	22.5	1003.8	y=1.032x	0.875	SI	y=1.062x +(-0.561)	0.876	SI	37
LOS GLADIOLOS	24/05/2010- 07/06/2010	PRIMAVERA	25.8	1004.3	y=0.778x	0.931	SI	y=0.896x +(-3.8461)	0.951	SI	39
TOME CANO	14/04/2010- 29/05/2010	PRIMAVERA	22.2	1007.6	y=0.773x	0.871	SI	y=0.747x +(0.615)	0.872	SI	47
LA HIDALGA	11/06/2010- 29/07/2010	VERANO	23.8	985.1	y=0.702x	0.757	NO problemas mantenimien	y=0.612x +(2.893)	0.776	NO problemas mantenimien	39
MERCADO CENTRAL	23/06/2010- 01/08/2010	VERANO	26.7	1014.7	y=1.172x	0.901	SI	y=1.240x +(-1.694)	0.911	SI	35
PARQUE REHOYAS	20/09/2010- 17/10/2010	VERANO	27.0	1000.7	y= 1.017x	0.839	SI	y=1.125X +(-3.067)	0.849	SI	61
CIUDAD DEP. ARRECIFE	26/08/2010- 08/10/2010	VERANO	25.2	1010.9	y=1.085x	0.922	SI	y=1.042X +(0.832)	0.923	SI	34

Tabla 2. Recopilación de ecuaciones obtenidas en intercomparaciones de analizadores de PM2.5. N: número de muestras válidas usadas.

Estación	Fecha	Periodo	T, °C	P hPa	Y=a·x	R ²	¿VALIDO?	Y=a·x+(b)	R²	¿VALIDO?	N
LA HIDALGA	21/02/2009 – 24/03/2009	INVIERNO	20.2	972	y=0.650x	0.9554	SI	y=0.7033x + (-1.4673)	0.9637	SI	28
LOS GLADIOLOS	27/04/2009 – 09/06/2009	PRIMAVERA	24.4	993	y=0.657x	0.8367	SI	y=0.9285x +(-3.1282)	0.9285	SI	33
MERCADO CENTRAL	17/11/2009- 23/01/2010	INVIERNO	25.1	1015	y=0.865x	0.8707	SI	y= 0.7552 +(1.519)	0.8939	SI	45
PARQUE REHOYAS	05/03/2010- 21/04/2010	INVIERNO	22.5	1003.8	y=0.768x	0.582	NO, Conc < 10µg/m³	y=0.908x +(-1.0521)	0.597	NO Conc < 10μg/m³	37
LOS GLADIOLOS	24/05/2010- 07/06/2010	VERANO	25.8	1004.3	y=0.684x	0.686	NO, Conc < 10µg/m³	y=0.941x +(-2.462)	0.745	NO, Conc < 10μg/m³	39
LA HIDALGA	11/06/2010- 29/07/2010	VERANO	23.8	985.1	y=0.474x	0.680	NO evalua, Conc < 10µg/m³	y=0.559x +(-1.254)	0.699	NO evalua, Conc < 10μg/m³	39
MERCADO CENTRAL	23/06/2010- 01/08/2010	VERANO	26.7	1014.7	y= 0.825	0.858	SI	y=0.7494 x + 0.912	0.868	SI	35
PARQUE REHOYAS	20/09/2010- 17/10/2010	VERANO	27.0	1000.7	y= 0.797x	0.489	NO evalua, Conc < 10µg/m³	y=1.192X +(-3.243)	0.553	NO evalua, Conc < 10µg/m³	61
CIUDAD DEP. ARRECIFE	26/08/2010- 08/10/2010	VERANO	25.2	1010.9	y=0.650x	0.627	NO evalua, Conc < 10µg/m³	y=0.558X +(0.564)	0.635	NO evalua, Conc < 10μg/m³	34

Standardized PM₁₀ y PM_{2.5} levels in the network

Model validation with standardized PM_{10} y $PM_{2.5}$ data in the network

Model validation with standardized PM_{10} y $PM_{2.5}$ data in the network

Model validation with standardized PM_{10} y $PM_{2.5}$ data in the network

1. PM₁₀ and PM_{2.5} levels

-method-01: reference - manual gravimetry

-method-02: automatic

Manual gravimetry

<u>automatic</u>

advantage: reference method

high time resolution, 1h

disadvantage: poor time resolution, 24-h average Needs validation

manual work

takes 3 days to know PM₁₀

we recommend to use the two methods:

- -automatic, continuously
- -gravimetric: intercomparisons 1 month summer, 1 month winter

dust, aerosols and pollutants

in-situ observations

PM₁₀ and PM_{2.5} levels PM₁₀ and PM_{2.5} composition complementary observations

observation network

. PM₁₀ and PM_{2.5} levels

-method-01: reference - manual gravimetry

-method-02: automatic

Manual gravimetry

<u>automatic</u>

advantage: reference method

high time resolution, 1h

CHEMICAL ANALYSIS

disadvantage: poor time resolution, 24-h average Needs validation

manual work

takes 3 days to know PM₁₀

we recommend to use the two methods:

- -automatic, constinously
- -gravimetric: intercomprisons, 1 month summer, 1 month winter

bulk chemical composition

PM samples: $\begin{cases} \text{fine + coarse (TSP, PM}_{10}) \\ \text{fine (PM}_{2.5}, PM}_{1}) \end{cases}$

Saharan dust

Urban particles

PM (μ g/m³)= $\frac{\text{dust}}{\text{dust}}$ + trace elements + ions (SO_4 =, NO_3 -, NH_4 +, Na+, Cl-) + OC + EC

Elemental Composition:

Major elements (Al, Si, Ca, K, Na, Mg) + trace elements
(P, Li , Be , Sc , Ti , V , Cr , Mn , Co , Ni , Cu ,
Zn , Ga , Ge , As , Se , Rb , Sr , Y , Zr , Nb , Mo,
Cd , Sn , Sb, Cs , Ba , La , Ce , Pr , Nd , Sm , Eu , Gd , Tb
, Dy , Ho , Er , Tm , Yb , Lu , Hf , Ta, W, Tl , Pb , Bi , Th
, U)

lons: $SO_4^=$, NO_3^- , NH_4^+ , Na^+ , Cl^-

Ion Chromatography, ICP-AES, ICP-MS, selective electrodes and colorimetry

Thermal/optical reflectance (TOR) and/or thermal/optical transmission (TOT)

Atomic Emission Spectroscopy
ICP-AES

Inductively coupled plasma
Mass spectroscopy
IPC-MS

Destructive techniques

destructive techniques

Destructive techniques

bulk chemical composition

PM samples:
$$\begin{cases} \text{fine + coarse (TSP, PM}_{10}) \\ \text{fine (PM}_{2.5}, PM_{1}) \end{cases}$$

<u>dust</u>

Elemental Composition:

Major elements (Al, Si, Ca, K, Na, Mg) + trace elements (P, Li , Be , Sc , Ti , V , Cr , Mn , Co , Ni , Cu , Zn , Ga , Ge , As , Se , Rb , Sr , Y , Zr , Nb , Mo, Cd , Sn , Sb, Cs , Ba , La , Ce , Pr , Nd , Sm , Eu , Gd , Tb , Dy , Ho , Er , Tm , Yb , Lu , Hf , Ta, W, Tl , Pb , Bi , Th , U)

Bulk dust estimations

33% Si 8% Al 4% Fe

....

$$Al_2O_3 + SiO_2 + CaCO_3 + \dots$$

PM₁₀: dust + sea salt + (sulphate + nitrate + organic matter + black carbon +metals) ...

 $PM_{2.5}$: dust + sea salt + (sulphate + nitrate + organic matter + black carbon + metals).

PM₁₀: dust + sea salt + vehicle exhaust + oil refining + power plants + ships +...

PM_{2.5}: dust + sea salt + vehicle exhaust + oil refining + power plants + ships +...

PM in urban areas

D J F M A M J J A S O N D D J F M A M J J A S O N D A M J J A S O N D J F M 2004 2004 2005

Urban particles

PM in urban areas

PM in remotes sites

Summer Izaña is within the SAL

PM_x composition in the SAL

Max: $133 \mu g/m^3 2012$

Min: $17 \mu g/m^3 1997$

MDFA: Major Dust Frequency Activity

UV Absorbing Aerosol Index = sensitive to iron oxides in dust

Satellite (Earth Probe, Nimbus 7, Aura): Total Ozone Monitor Spectrometer (1987-2001) Ozone Monitor Instrument (2005-2012)

ammonium-sulfate in the Saharan Air Layer

(1) air laden in Saharan dust has previously passed over the Mediterranean and Europe

dust, aerosols and pollutants

in-situ observations

PM₁₀ and PM_{2.5} levels PM₁₀ and PM_{2.5} composition complementary observations

let's build our observation network !!!

in-situ observations

in-situ observations

PM₁₀ and PM_{2.5} levels PM₁₀ and PM_{2.5} composition complementary observations

in-situ

meteorology:

wind, temperature, relative humidity, pressure

gaseous pollutants (reference methods):

NO_x: vehicle exhausts, ships, oil refining, power plants...

SO₂:, ships, oil refining, power plants

CO: vehicle exhausts

Examples of reference methods:

NOx: chemiluminiscense. EN 14211: 2006

SO2: fluorescense. EN 14212: 2006

CO: NDIR absorption. EN 14626: 2006

O₃: NDIR absorption. EN 14625: 2006

in-situ observations

in-situ observations

PM₁₀ and PM_{2.5} levels PM₁₀ and PM_{2.5} composition complementary observations ground based remote sensing

column

vertical distribution

CONCEPTS:

Knowing the <u>sunlight's energy at the top of the atmosphere</u>, the <u>thickness of the atmosphere</u>, and the <u>amount of sunlight transmitted to the earth's surface</u> may allows us to **determine the amount of extinction**, and thus, the amount of **aerosols (dust)**.

Beer's Law

$$I=I_{o}\cdot e^{-\sigma_{ext}\cdot L}$$

Transmissivity (T)

- σ_{ext} . L Extinction coefficient (σ ext): ϵ C path length (L) molar absorptivity of the absorber (ϵ) concentration of absorbing species in the material (C)

CONCEPTS:

Aerosol Extinction: A measure of attenuation of the light passing through the atmosphere due to <u>scattering</u> and <u>absorption</u> by aerosol particles.

Extinction coefficient (σ_{ext}) is the fractional depletion of radiance per unit path length (also called attenuation). It has units of km $^{-1}$.

Aerosol Mass Load: The columnar aerosol mass concentration (µg/cm²) is the total aerosol mass in a vertical column of atmosphere.

CONCEPTS:

+++

Aerosol Optical Depth (or Thickness)

"Aerosol Optical Depth" (AOD) is the degree to which aerosols prevent the transmission of light. The aerosol optical depth or optical thickness (τ) is defined as the integrated extinction coefficient over a vertical column of unit cross section.

$$AOD = \int_{z=0}^{z=toa} \sigma_{ext}(z)dz$$

Angstrom Exponent (α)

An exponent that expresses the spectral dependence of Aerosol Optical Depth (τ) with the wavelength of incident light (λ) . The spectral dependence of aerosol optical thickness can be approximated (depending on size distribution) by:

AOD =
$$\beta \lambda^{\alpha}$$
 α >> 0.9 FINE particles α << 0.7 COARSE particles

where α is the Angstrom exponent (B = aerosol optical depth at 1 μ m)

i.e. If AOD >~ 0.2 and α <0.7 then we are observing dust (aprox.)

GOBIERNO DE ESPAÑA MINISTERIO DE MEDIO AMBIENTE Y MEDIO RURAL Y HARINO Agencia Estatal de Meteorología

CONCEPTS:

Aerosol Asymmetry Factor A measure of the preferred scattering direction (forward

or backward) for light encountering aerosol particles.

$$\begin{array}{ccc} + & + & \\ + & + & \end{array} g = \frac{1}{2} \int_{-1}^{+1} \cos \Theta P \left(\cos \Theta\right) \ d\cos \Theta$$

$$\begin{array}{ccc} + & + & 2J_{-1} \\ + & + & P(\cos\Theta) = \frac{1 - g^2}{(1 + g^2 - 2g\cos\Theta)^{3/2}} \\ + & + & \end{array}$$

In general, g=0 indicates scattering directions evenly distributed between forward + +and backward directions, i.e. isotropic scattering (e.g. scattering from small + +particles)

g<0 scattering in the backward direction (i.e scattering angle > 90 deg.), often referred to as backscattering, is scattering at 180 deg.

ASSESSMENT OF OBSERVATIONS CONSISTENCY

Langely plot calibration (100 determination for each wavelenght):

$$I=I_o \cdot e^{-\sigma_{ext} \cdot L}$$

$$LnI = LnI_o - \sigma_{ext}L$$

If σ_{ext} is constant during the observation

We can determine I₀

Pristine conditions (very low and constant aerosol load

No clouds

MEASUREMENTS:

- The Cimel Electronique 318 spectral radiometer is a solar-powered, weather-hardy, robotically-pointed sun and sky spectral sun photometer.
- A sensor head points the sensor head at the sun according to a preprogrammed routine.
- The Cimel controller, batteries, and the optional Vitel satellite transmission equipment are usually deployed in a weather proof plastic case.

Sun measurements

AERONET Aerosol Robotic Network-Twenty Years of Observations and Research

The AERONET program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and has been expanded by collaborators from international agencies, institutes, universities, individual scientists and partners.

- > 7000 citations
- >400 sites
- Over 80 countries
- http://aeronet.gsfc.nasa.gov

AERONET provides a long-term, continuous public database of aerosol optical, microphysical, and radiative properties for aerosol research and characterization, validation of satellite measurements, and synergism with other databases.

MEASUREMENTS:

AERONET Data Flows

http://aeronet.gsfc.nasa.gov

Flux measurements

Direct - l=340, 380, 440, 500, 670, 870, 940, 1020 nm Diffuse - l=440, 670, 870, 1020 nm (alm, pp, pol)

Calibration and processing information

Mauna-Loa and Izaña CNRS-University of Lille and University of Valladolid

Aerosol optical depth and precipitable water computations

Cloud screening and quality control

Inversion products

Volume size distribution (0.05 < size <15 μ m), refractive index, single scattering albedo (l=440, 670, 870, 1020 nm)

Holben et al. RSE, 1998 Holben et al. JGR, 2001

Eck et al. JGR, 1999

Smirnov et al. *RSE*, 2000

Dubovik and King JGR, 2000

Dubovik et al. JGR, 2000

GRL, 2002

AERONET (AErosol RObotic NETwork)-

http://aeronet.gsfc.nasa.gov

An internationally Federated Network

- Characterization of aerosol optical properties
- Validation of satellite aerosol retrieval
- Near real-time acquisition; long term measurements

+ +

AERONET provides:

- global Aerosol Optical Depth of Dust in near real-time
- robust optical properties of Dust: size distribution, ref. Index, etc. (e.g. Asian Dust has stronger and less spectral dependent absorption than Saharan Dust)
- climatological models that reproduce observed optical properties of aerosol (useful for satellite retrievals)

MEASUREMENTS:

August 14

From total column observations...

to vertical resolved observations

Lidars

Ground-based remote sensing Telescope Laser LIDAR Taken from Matthias Wiegner's presentation (University of Munich, Meteorological Institute) to the SPIE 10 (International MIM Symposium Remote Sensing)

Ground-based remote sensing Emitted pulse Telescope Laser LIDAR Taken from Matthias Wiegner's presentation (University of Munich, Meteorological Institute) to the SPIE 10 (International MIM Symposium Remote Sensing)

Rayleigh Scattering

"Laser radiation elastically scattered from atoms or molecules is observed with no change of frequency"

Ground level

Mie Scattering

"Laser radiation elastically scattered from small particulates or aerosols (of size comparable to wavelength of radiation) is observed with no change in frequency"

Raman Scattering

"Laser radiation inelastically scattered from molecules is observed with a frequency shift characteristic of the molecule ($hv - hv^* = E$)"

Lidar-Barcelona (UPC) Raman Lidar EARLINET-SPALINET

Lidar-Tenerife (INTA-AEMET); Elastic lidar MPLNET

GAW Atmospheric Lidar Network (GALION)

GAW Report No. 178 Plan for the implementation of the **GAW Aerosol Lidar Observation Network GALION**

ftp://ftp.wmo.int/Documents/ PublicWeb/arep/gaw/gaw178galion-27-Oct.pdf

EARLINET

EARLINET (European Aerosol Research Lidar **NETwork**) is a network of advanced lidar stations distributed over Europe with the main goal to provide a comprehensive, quantitative, and statistically significant data base for the aerosol distribution on a continental scale. EARLINET provides independent of measurements aerosol extinction and backscatter, and retrieval of aerosol microphysical properties.

10 EARLINET stations are equipped also with sunphotometers (they are part of AERONET).

26 lidar stations

- 10 multiwavelength Raman

lidar stations

backscatter (355, 532 and 1064 nm) + extinction (355 and 532 nm) + depol ratio (532 nm)

- 9 Raman lidar stations
- 7 single backscatter lidar stations

http://mplnet.gsfc.nasa.gov/

523 nm MPLNET Automatized since July 2005

Distribution of stations as available through the cooperation between existing networks: AD-NET, ALINE, CISLINET, EARLINET, MPLNET, NDACC, REALM.

A case study of dust transport from Canary Islands to Iberian Peninsula

Córdoba-Jabonero et al., ACP Discuss., 2010

Barcelona lidar vs DREAM BSC

Ceilometer network

Met Services are replacing cloud-base ceilometer networks by aerosol backscatter profiling ceilometers (IR wavelenght).

Objective: To monitor MLD (Mixing Layer Depth) based on several hundred profiling ceilometers (100km sampling)

Heese et al., Atmos. Mes. Tech. 2010, Ceilometer-lidar inter-comparison:

backscatter coefficient retrieval and signal-to-noise ratio determination

Optimal for desertic areas !!

Viasala Ceilometer CL-51

MicroPulse Lidar and Ceilometer inter-comparison during Saharan dust intrusions over the Canary Islands

Y. Hernández, S. Alonso-Pérez, E. Cuevas, C. Camino, R. Ramos, J. de Bustos, C. Marrero, C. Córdoba-Jabonero and M. Gil (2011)

Campaign performed from January to March 2011 in Tenerife island

MPL-3 - Sta. Cruz de Tenerife. Feb 24, 2011

CL51 - Sta. Cruz de Tenerife. Feb 24, 2011

a Estatal de l

dust, aerosols and pollutants

in-situ observations

PM₁₀ and PM_{2.5} levels PM₁₀ and PM_{2.5} composition complementary observations

observation network

Level 2

Level 4

Level 3

dust air quality

Recommended priorities

+ + Level 1 (max priority) - PM₁₀ and PM_{2.5} levels - automatic methods

Level 1 (max priority) - meteorology (wind, T, RH, P, rain)

Level I (max priority) meteorology (wind, i, kii, i, idiii)

- PM₁₀ and PM_{2.5} levels - complementary gravimetric method

gaseous pollutants: NO_x, SO₂, CO,...

PM₁₀ and PM_{2.5} chemical composition

dust air quality

Recommended priorities

+ Level 1

- PM₁₀ and PM_{2.5} levels - automatic methods

Level 1

- meteorology (wind, T, RH, P, rain)

→ Level 2

- PM₁₀ and PM_{2.5} levels - complementary gravimetric method

Level 3

gaseous pollutants: NO_x, SO₂, CO,...

Level 4

- PM₁₀ and PM_{2.5} chemical composition

dust air quality

Recommended priorities

- + Level 1
- PM₁₀ and PM_{2.5} levels automatic methods

Level 1

- meteorology (wind, T, RH, P, rain)

+ + Level 2

PM₁₀ and PM_{2.5} levels - complementary gravimetric method

Level 3

- gaseous pollutants: NO_x, SO₂, CO,...

Level 4

- PM₁₀ and PM_{2.5} chemical composition

+samplers of PM₁₀ and PM_{2.5}

room of conditioning and weighting filters

- 1 month in summer (30 days) sampling 1 month in winter (30 days) sampling
 - at each station

Recommended priorities

+ + Level 1 (max) - PM₁₀ and PM_{2.5} levels - automatic methods

Level 1 (max) - meteorology (wind, T, RH, P, rain)

+ Level 2 - PM₁₀ and PM_{2.5} levels - complementary gravimetric method

+ + Level 3 - gaseous pollutants: NO_x, SO₂, CO,...

Level 4 - PM₁₀ and PM_{2.5} chemical composition

Level 4

dust air quality

Recommended priorities

+ + Level 1 (max) - PM₁₀ and PM_{2.5} levels - automatic methods

Level 1 (max) - meteorology (wind, T, RH, P, rain)

+ Level 2 - PM₁₀ and PM_{2.5} levels - complementary gravimetric method

+ + Level 3 - gaseous pollutants: NO_x, SO₂, CO,...

- PM₁₀ and PM_{2.5} chemical composition

